Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data
Background:
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings:
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions:
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data. PLoS Med 12(1): e32767. doi:10.1371/journal.pmed.1001776
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001776
Souhrn
Background:
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings:
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions:
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Zdroje
1. MadhiS, PetersenK, MadhiA, WasasA, KlugmanK (2000) Impact of human immunodeficiency virus type 1 on the disease spectrum of Streptococcus pneumoniae in South African children. Pediatr Infect Dis J 19: 1141–1147.
2. McCullersJA, McAuleyJL, BrowallS, IversonAR, BoydKL, et al. (2010) Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis 202: 1287–1295.
3. DiavatopoulosDA, ShortKR, PriceJT, WilkschJJ, BrownLE, et al. (2010) Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J 24: 1789–1798.
4. TalbotT, PoehlingK, HartertT, ArbogastP, HalasaN, et al. (2005) Seasonality of invasive pneumococcal disease: temporal relation to documented influenza and respiratory syncytial viral circulation. Am J Med 118: 285–291.
5. TechasaensiriB, TechasaensiriC, MejíasA, McCrackenGHJr, RamiloO (2010) Viral coinfections in children with invasive pneumococcal disease. Pediatr Infect Dis J 29: 519–523.
6. KusterSP, TuiteAR, KwongJC, McGeerA, FismanDN, et al. (2011) Evaluation of coseasonality of influenza and invasive pneumococcal disease: results from prospective surveillance. PLoS Med 8: e1001042.
7. EdwardsJ, MarkeyP, CookH, TrauerJ, KrauseV (2011) The relationship between influenza and invasive pneumococcal disease in the Northern Territory, 2005−2009. Med J Aust 194: 207.
8. WeinbergerDM, SimonsenL, JordanR, SteinerC, MillerMA, et al. (2012) Impact of the 2009 influenza pandemic on pneumococcal pneumonia hospitalizations in the US. J Infect Dis 205: 458–465.
9. NairH, NokesDJ, GessnerBD, DheraniM, MadhiSA, et al. (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375: 1545–1555.
10. StensballeLG, HjulerT, AndersenA, KaltoftM, RavnH, et al. (2008) Hospitalization for respiratory syncytial virus infection and invasive pneumococcal disease in Danish Children aged <2 years: a population-based cohort study. Clin Infect Dis 46: 1165–1171.
11. WeinbergerDM, GrantLR, SteinerCA, WeatherholtzR, SantoshamM, et al. (2014) Seasonal drivers of pneumococcal disease incidence: impact of bacterial carriage and viral activity. Clin Infect Dis 58: 188–194.
12. MurdochDR, JenningsLC (2009) Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease. J Infect 58: 37–46.
13. MadhiSA, KlugmanKP, Vaccine Trialist Group (2004) A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med 10: 811–813.
14. StarkJM, StarkMA, ColasurdoGN, LeVineAM (2006) Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol 78: 829–838.
15. SmithCM, SandriniS, DattaS, FreestoneP, ShafeeqS, et al. (2014) Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 190: 196–207.
16. LevineDA, PlattSL, DayanPS, MaciasCG, ZorcJJ, et al. (2004) Risk of serious bacterial infection in young febrile infants with respiratory syncytial virus infections. Pediatrics 113: 1728–1734.
17. NicoliEJ, TrotterCL, TurnerKM, ColijnC, WaightP, et al. (2013) Influenza and RSV make a modest contribution to invasive pneumococcal disease incidence in the UK. J Infect 66: 512–520.
18. KimPE, MusherDM, GlezenWP, BarradasMCR, NahmWK, et al. (1996) Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis 22: 100–106.
19. AmpofoK, BenderJ, ShengX, KorgenskiK, DalyJ, et al. (2008) Seasonal invasive pneumococcal disease in children: role of preceding respiratory viral infection. Pediatrics 122: 229–237.
20. JansenAGSC, SandersE, Van der EndeA, Van LoonA, HoesA, et al. (2008) Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect 136: 1448–1454.
21. WatsonM, GilmourR, MenziesR, FersonM, McIntyreP, et al. (2006) The association of respiratory viruses, temperature, and other climatic parameters with the incidence of invasive pneumococcal disease in Sydney, Australia. Clin Infect Dis 42: 211–215.
22. WalterND, TaylorTH, ShayDK, ThompsonWW, BrammerL, et al. (2010) Influenza circulation and the burden of invasive pneumococcal pneumonia during a non-pandemic period in the United States. Clin Infect Dis 50: 175–183.
23. Healthcare Cost and Utilization Project (2014) State Inpatient Databases [database]. Agency for Healthcare Research and Quality. Available: http://www.hcup-us.ahrq.gov/sidoverview.jsp. Accessed 2 December 2014.
24. Surveillance Epidemiology, and End Results Program (2014) Single year of age county population estimates, 1969−2012. National Cancer Institute. Available: http://seer.cancer.gov/popdata/singleages.html. Accessed 1 December 2014.
25. OlarteL, AmpofoK, StockmannC, MasonEO, DalyJA, et al. (2013) Invasive pneumococcal disease in infants younger than 90 days before and after introduction of PCV7. Pediatrics 132: e17–24.
26. LofgrenET, WengerJB, FeffermanNH, BinaD, GradusS, et al. (2010) Disproportional effects in populations of concern for pandemic influenza: insights from seasonal epidemics in Wisconsin, 1967−2004. Influenza Other Respir Viruses 4: 205–212.
27. SimonsenL, TaylorRJ, Young-XuY, HaberM, MayL, et al. (2011) Impact of pneumococcal conjugate vaccination of infants on pneumonia and influenza hospitalization and mortality in all age groups in the United States. MBio 2: e00309–10.
28. Politis D (2001) Resampling time series with seasonal components. In: Wegman EJ, Braverman A, Goodman A, Smyth P, editors. Frontiers in data mining and bioinformatics: proceedings of the 33rd Symposium on the Interface. Fairfax Station (Virginia): Interface Foundation of North America.
29. SingletonRJ, BrudenD, BulkowLR, VarneyG, ButlerJC (2006) Decline in respiratory syncytial virus hospitalizations in a region with high hospitalization rates and prolonged season. Pediatr Infect Dis J 25: 1116–1122.
30. RandolphAG, RederL, EnglundJA (2004) Risk of bacterial infection in previously healthy respiratory syncytial virus-infected young children admitted to the intensive care unit. Pediatr Infect Dis J 23: 990.
31. NicholKP, CherryJD (1967) Bacterial-viral interrelations in respiratory infections of children. N Engl J Med 277: 667–672.
32. SpurlingG, DoustJ, Del MarCB, ErikssonL (2011) Antibiotics for bronchiolitis in children. Cochrane Database Syst Rev 2011: CD005189.
33. PoehlingKA, TalbotTR, GriffinMR, CraigAS, WhitneyCG, et al. (2006) Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA 295: 1668–1674.
34. LadhaniSN, AndrewsNJ, WaightP, BorrowR, SlackMPE, et al. (2013) Impact of the 7-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in infants younger than 90 days in England and Wales. Clin Infect Dis 56: 633–640.
35. KlugmanKP, MadhiSA, HuebnerRE, KohbergerR, MbelleN, et al. (2003) A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349: 1341–1348.
36. SimonsenL, TaylorRJ, Schuck-PaimC, LustigR, HaberM, et al. (2014) Effect of 13-valent pneumococcal conjugate vaccine on admissions to hospital 2 years after its introduction in the USA: a time series analysis. Lancet Respir Med 2: 387–394.
37. LeeGM, KleinmanK, PeltonSI, HanageW, HuangSS, et al. (2014) Impact of 13-valent pneumococcal conjugate vaccination on Streptococcus pneumoniae carriage in young children in Massachusetts. J Pediatric Infect Dis Soc 3: 23–32.
38. O'BrienKL, WolfsonLJ, WattJP, HenkleE, Deloria-KnollM, et al. (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374: 893–902.
39. DangorZ, IzuA, MooreDP, NunesMC, SolomonF, et al. (2014) Temporal association in hospitalizations for tuberculosis, invasive pneumococcal disease and influenza virus illness in South African children. PLoS ONE 9: e91464.
40. CohenC, MoyesJ, TempiaS, GroomM, WalazaS, et al. (2013) Severe influenza-associated respiratory infection in high HIV prevalence setting, South Africa, 2009−2011. Emerg Infect Dis 19: 1766.
41. ZhouH, ThompsonWW, ViboudCG, RingholzCM, ChengP-Y, et al. (2012) Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993−2008. Clin Infect Dis 54: 1427–1436.
42. GuoW, WangJ, ShengM, ZhouM, FangL (2012) Radiological findings in 210 paediatric patients with viral pneumonia: a retrospective case study. Br J Radiol 85: 1385–1389.
43. GuevaraRE, ButlerJC, MarstonBJ, PlouffeJF, FileTM, et al. (1999) Accuracy of ICD-9-CM codes in detecting community-acquired pneumococcal pneumonia for incidence and vaccine efficacy studies. Am J Epidemiol 149: 282–289.
44. OlsonDR, HeffernanRT, PaladiniM, KontyK, WeissD, et al. (2007) Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City. PLoS Med 4: e247.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2015 Číslo 1
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data
- Randomized Controlled Trials in Environmental Health Research: Unethical or Underutilized?
- Supporting Those Who Go to Fight Ebola
- Evaluation of a Minimally Invasive Cell Sampling Device Coupled with Assessment of Trefoil Factor 3 Expression for Diagnosing Barrett's Esophagus: A Multi-Center Case–Control Study