Efficacy of Handwashing with Soap and Nail Clipping on Intestinal Parasitic Infections in School-Aged Children: A Factorial Cluster Randomized Controlled Trial
Background:
Intestinal parasitic infections are highly endemic among school-aged children in resource-limited settings. To lower their impact, preventive measures should be implemented that are sustainable with available resources. The aim of this study was to assess the impact of handwashing with soap and nail clipping on the prevention of intestinal parasite reinfections.
Methods and Findings:
In this trial, 367 parasite-negative school-aged children (aged 6–15 y) were randomly assigned to receive both, one or the other, or neither of the interventions in a 2 × 2 factorial design. Assignment sequence was concealed. After 6 mo of follow-up, stool samples were examined using direct, concentration, and Kato-Katz methods. Hemoglobin levels were determined using a HemoCue spectrometer. The primary study outcomes were prevalence of intestinal parasite reinfection and infection intensity. The secondary outcome was anemia prevalence. Analysis was by intention to treat. Main effects were adjusted for sex, age, drinking water source, latrine use, pre-treatment parasites, handwashing with soap and nail clipping at baseline, and the other factor in the additive model. Fourteen percent (95% CI: 9% to 19%) of the children in the handwashing with soap intervention group were reinfected versus 29% (95% CI: 22% to 36%) in the groups with no handwashing with soap (adjusted odds ratio [AOR] 0.32, 95% CI: 0.17 to 0.62). Similarly, 17% (95% CI: 12% to 22%) of the children in the nail clipping intervention group were reinfected versus 26% (95% CI: 20% to 32%) in the groups with no nail clipping (AOR 0.51, 95% CI: 0.27 to 0.95). Likewise, following the intervention, 13% (95% CI: 8% to 18%) of the children in the handwashing group were anemic versus 23% (95% CI: 17% to 29%) in the groups with no handwashing with soap (AOR 0.39, 95% CI: 0.20 to 0.78). The prevalence of anemia did not differ significantly between children in the nail clipping group and those in the groups with no nail clipping (AOR 0.53, 95% CI: 0.27 to 1.04). The intensive follow-up and monitoring during this study made it such that the assessment of the observed intervention benefits was under rather ideal circumstances, and hence the study could possibly overestimate the effects when compared to usual conditions.
Conclusions:
Handwashing with soap at key times and weekly nail clipping significantly decreased intestinal parasite reinfection rates. Furthermore, the handwashing intervention significantly reduced anemia prevalence in children. The next essential step should be implementing pragmatic studies and developing more effective approaches to promote and implement handwashing with soap and nail clipping at larger scales.
Vyšlo v časopise:
Efficacy of Handwashing with Soap and Nail Clipping on Intestinal Parasitic Infections in School-Aged Children: A Factorial Cluster Randomized Controlled Trial. PLoS Med 12(6): e32767. doi:10.1371/journal.pmed.1001837
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001837
Souhrn
Background:
Intestinal parasitic infections are highly endemic among school-aged children in resource-limited settings. To lower their impact, preventive measures should be implemented that are sustainable with available resources. The aim of this study was to assess the impact of handwashing with soap and nail clipping on the prevention of intestinal parasite reinfections.
Methods and Findings:
In this trial, 367 parasite-negative school-aged children (aged 6–15 y) were randomly assigned to receive both, one or the other, or neither of the interventions in a 2 × 2 factorial design. Assignment sequence was concealed. After 6 mo of follow-up, stool samples were examined using direct, concentration, and Kato-Katz methods. Hemoglobin levels were determined using a HemoCue spectrometer. The primary study outcomes were prevalence of intestinal parasite reinfection and infection intensity. The secondary outcome was anemia prevalence. Analysis was by intention to treat. Main effects were adjusted for sex, age, drinking water source, latrine use, pre-treatment parasites, handwashing with soap and nail clipping at baseline, and the other factor in the additive model. Fourteen percent (95% CI: 9% to 19%) of the children in the handwashing with soap intervention group were reinfected versus 29% (95% CI: 22% to 36%) in the groups with no handwashing with soap (adjusted odds ratio [AOR] 0.32, 95% CI: 0.17 to 0.62). Similarly, 17% (95% CI: 12% to 22%) of the children in the nail clipping intervention group were reinfected versus 26% (95% CI: 20% to 32%) in the groups with no nail clipping (AOR 0.51, 95% CI: 0.27 to 0.95). Likewise, following the intervention, 13% (95% CI: 8% to 18%) of the children in the handwashing group were anemic versus 23% (95% CI: 17% to 29%) in the groups with no handwashing with soap (AOR 0.39, 95% CI: 0.20 to 0.78). The prevalence of anemia did not differ significantly between children in the nail clipping group and those in the groups with no nail clipping (AOR 0.53, 95% CI: 0.27 to 1.04). The intensive follow-up and monitoring during this study made it such that the assessment of the observed intervention benefits was under rather ideal circumstances, and hence the study could possibly overestimate the effects when compared to usual conditions.
Conclusions:
Handwashing with soap at key times and weekly nail clipping significantly decreased intestinal parasite reinfection rates. Furthermore, the handwashing intervention significantly reduced anemia prevalence in children. The next essential step should be implementing pragmatic studies and developing more effective approaches to promote and implement handwashing with soap and nail clipping at larger scales.
Zdroje
1. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest 2008;118:1311–1321. doi: 10.1172/JCI34261 18382743
2. Luong TV. De-worming school children and hygiene intervention. Int J Environ Health Res 2003;13:S15–S159.
3. Harhay MO, Horton J, Olliaro PL. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev Anti Infect Ther 2010;8:219–234. doi: 10.1586/eri.09.119 20109051
4. Tolentino K, Friedman JF. An update of anemia in less developed countries. Am J Trop Med Hyg 2007;77:44–51. 17620629
5. Friedman JF, Kanzaria HK, McGarvey ST. Human schistosomiasis and anaemia: the relationship and potential mechanisms. Trends in Parasitol 2005;21:386–392. 15967725
6. Jia TW, Melville S, Utzinger J, King CH, Zhou XN. Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Neg Trop Dis 2012;6:e1621. doi: 10.1371/journal.pntd.0001621 22590656
7. World Health Organization. Preventive chemotherapy in human helminthiasis. Coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. Geneva: World Health Organization; 2006.
8. Utzinger J, Bergquist R, Shu-Hua X, Singer BH, Tanner MM. Sustainable schistosomiasis control-the way forward. Lancet 2003;362:1932–1934. 14667754
9. Smits HL. Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 2009;7:37–56. doi: 10.1586/14787210.7.1.37 19622056
10. World Health Organization. Prevention and control of intestinal parasitic infections. Report of a WHO expert committee. World Health Organization Technical Report Series 794. Geneva: World Health Organization; 1987. Available: http://whqlibdoc.who.int/trs/WHO_TRS_749.pdf. Accessed 20 February 2013.
11. Bloomfield SF, Aiello AE, Cookson B, O’Boyle C, Larson EL. The effectiveness of hand hygiene procedures in reducing the risks of infections in home and community settings including hand washing and alcohol-based hand sanitizers. Am J Infect Control 2007;35:S27–S64.
12. Alum A, Rubino JR, Ijaz MK. The global war against intestinal parasites—should we use a holistic approach? Int J Infect Dis 2010;14:e732–e738. doi: 10.1016/j.ijid.2009.11.036 20399129
13. Curtis V, Cairncross S. Effect of washing hands with soap on diarrhoea risk in the community: a systematic review. Lancet Infect Dis 2003;3:275–281. 12726975
14. Luby SP, Agboatwalla M, Feikin DR, Painter J, Billhimer W, Altaf A, et al. Effect of hand-washing on child health: a randomised controlled trial. Lancet 2005;366:225–233. 16023513
15. Rabie T, Curtis V. Hand-washing and risk of respiratory infections: a quantitative systematic review. Trop Med Int Health 2006;11:258–267. 16553905
16. Fung ICS, Cairncross S. Ascariasis and handwashing. Trans R Soc Trop Med Hyg 2009;103:215–222. doi: 10.1016/j.trstmh.2008.08.003 18789465
17. Khan MY. An analytical study of factors related to infestation by intestinal parasites in rural school children (report of a pilot study). Public Health 1979;93:82–88. 432400
18. Mahmud MA, Spigt M, Bezabih AM, Pavon IL, Dinant GJ, Velasco RB. Risk factors for intestinal parasitosis, anaemia, and malnutrition among school children in Ethiopia. Pathog Glob Health 2013;107:58–65. doi: 10.1179/2047773213Y.0000000074 23683331
19. Food, Medicine and Health Care Administration and Control Authority of Ethiopia Standard treatment guideline for primary hospitals. Addis Ababa: Food, Medicine and Health Care Administration and Control Authority; 2010. Available: http://apps.who.int/medicinedocs/documents/s17820en/s17820en.pdf. Accessed 1 January 2014.
20. Zeibig EA. Clinical parasitology: a principal approach. Philadelphia: Saunders; 1997.
21. World Health Organization. Basic laboratory methods in medical parasitology. Geneva: World Health Organization; 1991. Available: http://whqlibdoc.who.int/publications/9241544104_%28part1%29.pdf?ua=1. Accessed 26 February 2013.
22. Neufeld L, Garcia-Guerra A, Sanchez-Francia D, Newton-Sanchez O, Ramirez-Villalobos MD, Rivera-Dommarco J. Haemoglobin measured by Hemocue and a reference method in venous and capillary blood: a validation study. Salud Publica Mex 2002;44:219–227. 12132319
23. World Health Organization. Iron deficiency anaemia assessment, prevention, and control—a guide for program managers. WHO/NHD/01.3. Geneva: World Health Organization; 2001. Available: http://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf. Accessed 1 January 2014.
24. Rigby AS, Vail A. Statistical methods in epidemiology. II: A commonsense approach to sample size estimation. Disabil Rehabil 1998;20:405–410. 9846240
25. Rodriguez G, Elo I. Intra-class correlation in random-effects models for binary data. Stata J 2003;3:32–46.
26. Gungorena B, Latipov R, Regallet G, Musabaev E. Effect of hygiene promotion on the risk of reinfection rate of intestinal parasites in children in rural Uzbekistan. Trans R Soc Trop Med Hyg 2007;101:564–569. 17418321
27. Gelaw A, Anagaw B, Nigussie B Silesh B, Yirga A, Alem M, et al. Prevalence of intestinal parasitic infections and risk factors among schoolchildren at the University of Gondar Community School, Northwest Ethiopia: a cross-sectional study. BMC Public Health 2013;13:304. doi: 10.1186/1471-2458-13-304 23560704
28. Duc PP, Nguyen-Viet H, Hattendorf J, Zinsstag J, Cam PD, Odermatt P. Risk factors for Entamoeba histolytica infection in an agricultural community in Hanam Province, Vietnam. Parasit Vectors 2011;4:102. doi: 10.1186/1756-3305-4-102 21663665
29. Monse B, Benzian H, Naliponguit E, Belizario V, Schratz A, Helderman WVP. The Fit for School health outcome study—a longitudinal survey to assess health impacts of an integrated school health programme in the Philippines. BMC Public Health 2013;13:256. doi: 10.1186/1471-2458-13-256 23517517
30. Sanou D, Turgeon-O’Brien H, Desrosiers T. Nutrition intervention and adequate hygiene practices to improve iron status of vulnerable preschool Burkinabe children. Nutrition 2010;26:68–74. doi: 10.1016/j.nut.2009.05.017 19628372
31. Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How effective is school-based deworming for the community-wide control of soil-transmitted helminths? PLoS Negl Trop Dis 2013;7:e2027. doi: 10.1371/journal.pntd.0002027 23469293
32. Nandrup-Bus I. Comparative studies of hand disinfection and hand-washing procedures as tested by pupils in intervention programs. Am J Infect Control 2011;39:450–455. doi: 10.1016/j.ajic.2010.10.023 21802616
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2015 Číslo 6
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Co dělat při intoleranci statinů?
Najčítanejšie v tomto čísle
- The Mistreatment of Women during Childbirth in Health Facilities Globally: A Mixed-Methods Systematic Review
- The Potential for Reducing the Number of Pneumococcal Conjugate Vaccine Doses While Sustaining Herd Immunity in High-Income Countries
- Mistreatment of Women in Childbirth: Time for Action on This Important Dimension of Violence against Women
- Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study