#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: A case–control study


In a case–control study, Jennifer Yokoyama and colleagues present fine-mapping of the human leukocyte antigen genetic region to identify haplotypes associated with Alzheimer disease.


Vyšlo v časopise: Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: A case–control study. PLoS Med 14(3): e32767. doi:10.1371/journal.pmed.1002272
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1002272

Souhrn

In a case–control study, Jennifer Yokoyama and colleagues present fine-mapping of the human leukocyte antigen genetic region to identify haplotypes associated with Alzheimer disease.


Zdroje

1. Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M, et al. World Alzheimer Report 2015. The global impact of dementia: An analysis of prevalence, incidence, cost and trends. 2015. https://www.alz.co.uk/research/world-report-2015

2. Zetzsche T, Rujescu D, Hardy J, Hampel H. Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn. 2010;10: 667–690. doi: 10.1586/erm.10.48 20629514

3. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 Variants in Alzheimer’s Disease. N Engl J Med. 2013;368(2): 117–127. doi: 10.1056/NEJMoa1211851 23150934

4. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson P, Snaedal J, et al. Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. N Engl J Med. 2013;368(2): 107–116. doi: 10.1056/NEJMoa1211103 23150908

5. Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M, et al. Assessment Of Trem2 Rs75932628 Association With Alzheimer’s Disease In A Population-Based Sample: The Cache County Study. Neurobiol Aging. 2013;34: 2889.e11–2889.e13.

6. Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, et al. Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun. 2016;4(1):98. doi: 10.1186/s40478-016-0367-7 27589997

7. Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, et al. TREM2 is associated with risk of Alzheimer disease in Spanish population. Neurobiol Aging. 2013;34: 1711.e15–1711.e17.

8. Coppola G, Chinnathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ortolaza AI, et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet. 2012;21: 3500–3512. doi: 10.1093/hmg/dds161 22556362

9. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45: 1452–8. doi: 10.1038/ng.2802 24162737

10. Naj AC, Jun G, Beecham GW, Wang L, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43: 436–441. doi: 10.1038/ng.801 21460841

11. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77: 43–51. doi: 10.1016/j.biopsych.2014.05.006 24951455

12. Hensley K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis. 2010;21: 1–14. doi: 10.3233/JAD-2010-1414 20182045

13. Wes PD, Holtman IR, Boddeke EWGM, Möller T, Eggen BJL. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia. 2016;64: 197–213. doi: 10.1002/glia.22866 26040959

14. Gan L, Ye S, Chu A, Anton K, Yi S, Vincent VA, et al. Identification of Cathepsin B as a Mediator of Neuronal Death Induced by Aβ-activated Microglial Cells Using a Functional Genomics Approach. J Biol Chem. 2004;279: 5565–5572. doi: 10.1074/jbc.M306183200 14612454

15. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352: 712–6. doi: 10.1126/science.aad8373 27033548

16. Eikelenboom P, Hoozemans JJ, Veerhuis R, van Exel E, Rozemuller AJ, van Gool WA. Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer’s disease. Alzheimers Res Ther. 2012;4: 15. doi: 10.1186/alzrt118 22647384

17. Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: A 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52: 168–174. doi: 10.1002/ana.10265 12210786

18. Mrak RE, Griffin WST. Potential inflammatory biomarkers in Alzheimer’s disease. J Alzheimers Dis. 2005;8: 369–75. 16556968

19. Wood JA, Wood PL, Ryan R, Graff-Radford NR, Pilapil C, Robitaille Y, et al. Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 beta or IL-1RA but increases in the associated acute phase proteins IL-6, alpha 2-macroglobulin and C-reactive protein. Brain Res. 1993;629: 245–52. 7509248

20. Shi Q, Colodner KJ, Matousek SB, Merry K, Hong X, Kenison JE, et al. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline. J Neurosci. 2015;35: 13029–13042. doi: 10.1523/JNEUROSCI.1698-15.2015 26400934

21. Stephan AH, Madison D V, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, et al. A Dramatic Increase of C1q Protein in the CNS during Normal Aging. J Neurosci. 2013;33: 13460–13474. doi: 10.1523/JNEUROSCI.1333-13.2013 23946404

22. Dorman JS, Bunker CH. HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review. Epidemiol Rev. 2000;22: 218–27. 11218373

23. Allen M, Kachadoorian M, Carrasquillo MM, Karhade A, Manly L, Burgess JD, et al. Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol Genet. 2015;1: e15. doi: 10.1212/NXG.0000000000000012 27066552

24. Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, et al. Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurol. 2016;94158: 1–7.

25. Dubois B, Feldman H, Jacova C. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13: 614–29. doi: 10.1016/S1474-4422(14)70090-0 24849862

26. Boehme KL, Young B, Mukherjee S, Crane PK, Kauwe J, Young B. ADGC 1000 Genomes combined data workflow. 2014; 1–12. http://kauwelab.byu.edu/Portals/22/adgc_combined_1000G_12032014.pdf

27. Bonham LW, Desikan RS, Yokoyama JS. The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer’s disease. Acta Neuropathol Commun. 2016;4: 1–7.

28. Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H, et al. The role of clusterin in amyloid-β-associated neurodegeneration. JAMA Neurol. 2014;71: 180–7. doi: 10.1001/jamaneurol.2013.4560 24378367

29. Desikan RS, Thompson WK, Holland D, Hess CP, Brewer JB, Zetterberg H, et al. Heart fatty acid binding protein and Aβ-associated Alzheimer’s neurodegeneration. Mol Neurodegener. 2013;8: 39. doi: 10.1186/1750-1326-8-39 24088526

30. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43: 2412–2414.

31. Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S, et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement. 2010;6(3): 265–273. doi: 10.1016/j.jalz.2010.03.013 20451875

32. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65: 403–413. doi: 10.1002/ana.21610 19296504

33. Rey A. L’examen clinique en psychologie. Lexamen clinique en psychologie. 1958.

34. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11): 1356–1364. doi: 10.1176/ajp.141.11.1356 6496779

35. Mohs RC CL. Alzheimer’s Disease Assessment Scale (ADAS). Psychopharmacol Bull. 1988;24: 627–8. 3249763

36. Hughes CP, Berg L, Danziger WL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140: 566–572. 7104545

37. Khor S-S, Yang W, Kawashima M, Kamitsuji S, Zheng X, Nishida N, et al. High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references. Pharmacogenomics J. 2015;15: 530–7. doi: 10.1038/tpj.2015.4 25707395

38. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG—HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14: 192–200. doi: 10.1038/tpj.2013.18 23712092

39. Pappas DJ, Marin W, Hollenbach JA, Mack SJ. Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): An integrated case-control analysis pipeline. Hum Immunol. 2016;77: 283–7. doi: 10.1016/j.humimm.2015.12.006 26708359

40. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang L-S, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42: 234–9. doi: 10.1038/ng.536 20154673

41. Hollenbach JA, Mack SJ, Thomson G, Gourraud PA. Analytical methods for disease association studies with immunogenetic data. Methods Mol Biol. 2012;882: 245–266. doi: 10.1007/978-1-61779-842-9_14 22665238

42. Maiers M., Gragert L., Klitz W. High resolution HLA alleles and haplotypes in the US population. Human Immunology (2007) 68, 779–788. doi: 10.1016/j.humimm.2007.04.005 17869653

43. Tapiola T, Pirttilä T, Mehta PD, Alafuzof I, Lehtovirta M, Soininen H. Relationship between apoE genotype and CSF β-amyloid (1–42) and tau in patients with probable and definite Alzheimer’s disease. Neurobiol Aging. 2000;21: 735–740. 11016543

44. Isobe N, Keshavan A, Gourraud P-A, Zhu AH, Datta E, Schlaeger R, et al. Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurol. 2016;73: 795–802. doi: 10.1001/jamaneurol.2016.0980 27244296

45. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-analysis. JAMA. 1997;278(16): 1349–1356. 9343467

46. Kessler H, Pajonk F-G, Meisser P, Schneider-Axmann T, Hoffmann K-H, Supprian T, et al. Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease. J Neural Transm. 2006;113: 1763–9. doi: 10.1007/s00702-006-0485-7 16736242

47. Weitkamp LR, Nee L, Keats B, Polinsky RJ, Guttormsen S. Alzheimer disease: evidence for susceptibility loci on chromosomes 6 and 14. Am J Hum Genet. 1983;35: 443–53. 6859040

48. Payami H, Schellenberg GD, Zareparsi S, Kaye J, Sexton GJ, Head MA, et al. Evidence for association of HLA-A2 allele with onset age of Alzheimer’s disease. Neurology. 1997;49: 512–8. 9270587

49. Payami H, Kaye J, Becker W, Norman D, Wetzsteon P. HLA-A2, or a closely linked gene, confers susceptibility to early-onset sporadic Alzheimer’s disease in men. Neurology. 1991;41: 1544–8. 1922793

50. Combarros O, Escribano J, Sánchez-Velasco P, Leyva-Cobián F, Oterino A, Leno C, et al. Association of the HLA-A2 allele with an earlier age of onset of Alzheimer’s disease. Acta Neurol Scand. 1998;98: 140–1. 9724015

51. Guerini FR, Calabrese E, Agliardi C, Zanzottera M, Franceschi M, Grimaldi LM, et al. Association study of the HLA-A2 allele in Italian Alzheimer disease patients. Neurobiol Aging. 2009;30: 2082–2083. doi: 10.1016/j.neurobiolaging.2008.02.001 18359130

52. Listì F, Candore G, Balistreri CR, Grimaldi MP, Orlando V, Vasto S, et al. Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res. 2006;9: 99–101. doi: 10.1089/rej.2006.9.99 16608404

53. Ma SL, Tang NLS, Tam CWC, Lui VWC, Suen EWC, Chiu HFK, et al. Association between HLA-A alleles and Alzheimer’s disease in a southern Chinese community. Dement Geriatr Cogn Disord. 2008;26: 391–7. doi: 10.1159/000164275 18936542

54. Araria-Goumidi L, Lambert JC, Cottel D, Amouyel P, Chartier-Harlin MC. No association of the HLA-A2 allele with Alzheimer’s disease. Neurosci Lett. 2002;335: 75–8. 12459502

55. Zareparsi S, James DM, Kaye JA, Bird TD, Schellenberg GD, Payami H. HLA-A2 homozygosity but not heterozygosity is associated with Alzheimer disease. Neurology. 2002;58: 973–5. 11914421

56. Harris JM, Cumming AM, Craddock N, St Clair D, Lendon CL. Human leucocyte antigen-A2 increases risk of Alzheimer’s disease but does not affect age of onset in a Scottish population. Neurosci Lett. 2000;294: 37–40. 11044581

57. Small GW, Scott WK, Komo S, Yamaoka LH, Farrer LA, Auerbach SH, et al. No association between the HLA-A2 allele and Alzheimer disease. Neurogenetics. 1999;2: 177–82. 10541592

58. Small GW, Ebeling SC, Matsuyama SS, Heyman A, Reisner EG, Renvoize EB, et al. Variable association of HLA-A2 in men with early-onset Alzheimer disease. Neurobiol Aging. 1991;12: 375–7. 1961374

59. Ballerini C, Nacmias B, Rombolà G, Marcon G, Massacesi L, Sorbi S. HLA A2 allele is associated with age at onset of Alzheimer’s disease. Ann Neurol. 1999;45: 397–400. 10072057

60. Guerini FR, Tinelli C, Calabrese E, Agliardi C, Zanzottera M, De Silvestri A, et al. HLA-A*01 is associated with late onset of Alzheimer’s disease in Italian patients. Int J Immunopathol Pharmacol. 2009;22: 991–9. doi: 10.1177/039463200902200414 20074462

61. Middleton D, Mawhinney H, Curran MD, Edwardson JA, Perry R, McKeith I, et al. Frequency of HLA-A and B alleles in early and late-onset Alzheimer’s disease. Neurosci Lett. 1999;262: 140–2. 10203251

62. Mansouri L, Messalmani M, Klai S, Bedoui I, Derbali H, Gritli N, et al. Association of HLA-DR/DQ polymorphism with Alzheimer’s disease. Am J Med Sci. 2015;349: 334–7. doi: 10.1097/MAJ.0000000000000416 25651370

63. Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, et al. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol. 2016;73.

64. Miretti MM, Walsh EC, Ke X, Delgado M, Griffiths M, Hunt S, et al. A High-Resolution Linkage-Disequilibrium Map of the Human Major Histocompatibility Complex and First Generation of Tag Single-Nucleotide Polymorphisms. Am J Hum Genet. 2005;76: 634–646. doi: 10.1086/429393 15747258

65. Lehmann DJ, Wiebusch H, Marshall SE, Johnston C, Warden DR, Morgan K, et al. HLA class I, II & III genes in confirmed late-onset Alzheimer’s disease. Neurobiol Aging. 2001;22: 71–77. 11164278

66. Neill D, Curran MD, Middleton D, Mawhinney H, Edwardson JA, McKeith I, et al. Risk for Alzheimer’s disease in older late-onset cases is associated with HLA-DRB1*03. Neurosci Lett. 1999;275: 137–40. 10568518

67. Schmidt H, Williamson D, Ashley-Koch A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol. 2007;165: 1097–109. doi: 10.1093/aje/kwk118 17329717

68. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476: 214–9. doi: 10.1038/nature10251 21833088

69. Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013;9: e1003926. doi: 10.1371/journal.pgen.1003926 24278027

70. Lysandropoulos AP, Racapé J, Holovska V, Toungouz M. Human leucocyte antigen (HLA) class I and II typing in Belgian multiple sclerosis patients. Acta Neurol Belg. 2016;

71. Wissemann WT, Hill-Burns EM, Zabetian CP, Factor SA, Patsopoulos N, Hoglund B, et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am J Hum Genet. 2013;93: 984–993. doi: 10.1016/j.ajhg.2013.10.009 24183452

72. Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet. 2011;377: 641–649. doi: 10.1016/S0140-6736(10)62345-8 21292315

73. Al-Hakbany M, Awadallah S, AL-Ayadhi L. The Relationship of HLA Class I and II Alleles and Haplotypes with Autism: A Case Control Study. Autism Res Treat. 2014;2014: 1–6.

74. Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 Locus Alone Explains Most of the Risk and Protection in Narcolepsy with Cataplexy in Europe. Sleep. 2014;37: 19–25. doi: 10.5665/sleep.3300 24381371

75. Chabas D, Taheri S, Renier C, Mignot E. The genetics of narcolepsy. Annu Rev Genomics Hum Genet. 2003;4: 459–83. doi: 10.1146/annurev.genom.4.070802.110432 14527309

76. Mignot E, Hayduk R, Black J, Grumet FC, Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20: 1012–20. 9456467

77. Watson NF, Ton TGN, Koepsell TD, Gersuk VH, Longstreth WT Jr. Does narcolepsy symptom severity vary according to HLA-DQB1*0602 allele status? Sleep. 2010;33: 29–35. 20120618

78. Risacher SL, Kim S, Nho K, Foroud T, Shen L, Petersen RC, et al. APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern. Alzheimer’s Dement. 2015;11: 1417–1429.

79. Hsieh A-R, Chang S-W, Chen P-L, Chu C-C, Hsiao C-L, Yang W-S, et al. Predicting HLA genotypes using unphased and flanking single-nucleotide polymorphisms in Han Chinese population. BMC Genomics. 2014;15: 81. doi: 10.1186/1471-2164-15-81 24476119

80. Dilthey A, Leslie S, Moutsianas L, Shen J, Cox C, Nelson MR, et al. Multi-Population Classical HLA Type Imputation. PLoS Comput Biol. 2013;9.

81. Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, et al. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol. 2015;72: 15–24. doi: 10.1001/jamaneurol.2014.3049 25365775

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2017 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#