Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study
Using quantitative and targeted metabolomics, Vijay Varma and colleagues identified metabolites for which brain tissue levels were associated with Alzheimer disease (AD) neuropathology and blood concentrations were associated with AD progression in prodromal and preclinical stages.
Vyšlo v časopise:
Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med 15(1): e32767. doi:10.1371/journal.pmed.1002482
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002482
Souhrn
Using quantitative and targeted metabolomics, Vijay Varma and colleagues identified metabolites for which brain tissue levels were associated with Alzheimer disease (AD) neuropathology and blood concentrations were associated with AD progression in prodromal and preclinical stages.
Zdroje
1. Trushina E, Mielke MM. Recent advances in the application of metabolomics to Alzheimer's Disease. Biochimica et biophysica acta. 2014;1842(8):1232–9. doi: 10.1016/j.bbadis.2013.06.014 23816564
2. Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D. Alzheimer's disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. Journal of cellular and molecular medicine. 2008;12(5A):1477–85. doi: 10.1111/j.1582-4934.2008.00385.x 18554316
3. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nature medicine. 2014;20(4):415–8. doi: 10.1038/nm.3466 24608097
4. Kim E, Jung YS, Kim H, Kim JS, Park M, Jeong J, et al. Metabolomic signatures in peripheral blood associated with Alzheimer's disease amyloid-beta-induced neuroinflammation. Journal of Alzheimer's disease: JAD. 2014;42(2):421–33. doi: 10.3233/JAD-132165 24898638
5. Inoue K, Tsuchiya H, Takayama T, Akatsu H, Hashizume Y, Yamamoto T, et al. Blood-based diagnosis of Alzheimer's disease using fingerprinting metabolomics based on hydrophilic interaction liquid chromatography with mass spectrometry and multivariate statistical analysis. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2015;974:24–34. doi: 10.1016/j.jchromb.2014.10.022 25463194
6. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature medicine. 2007;13(11):1359–62. doi: 10.1038/nm1653 17934472
7. Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, et al. Blood metabolite markers of preclinical Alzheimer's disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement. 2016;12(7):815–22. doi: 10.1016/j.jalz.2015.12.008 26806385
8. Thambisetty M, Lovestone S. Blood-based biomarkers of Alzheimer's disease: challenging but feasible. Biomarkers in medicine. 2010;4(1):65–79. doi: 10.2217/bmm.09.84 20387303
9. Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. The journals of gerontology. 2008;63(12):1416–9. 19126858
10. Shock NW, Gruelich R, Andres R, Arenberg D, Costa PT, Lakatta EG, et al. Normal Human Aging: The Baltimore Longitudinal Study of Aging. Washington, DC, USA: U.S. Government Printing Office; 1984.
11. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, et al. The Alzheimer's disease neuroimaging initiative. Neuroimaging clinics of North America. 2005;15(4):869–77, xi-xii. doi: 10.1016/j.nic.2005.09.008 16443497
12. O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, et al. Neuropathologic studies of the Baltimore Longitudinal Study of Aging (BLSA). Journal of Alzheimer's disease: JAD. 2009;18(3):665–75. doi: 10.3233/JAD-2009-1179 19661626
13. Gamaldo A, Moghekar A, Kilada S, Resnick SM, Zonderman AB, O'Brien R. Effect of a clinical stroke on the risk of dementia in a prospective cohort. Neurology. 2006;67(8):1363–9. doi: 10.1212/01.wnl.0000240285.89067.3f 17060561
14. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–86. 2011243
15. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991;82(4):239–59. 1759558
16. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O'Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Annals of neurology. 2008;64(2):168–76. doi: 10.1002/ana.21413 18496870
17. Iacono D, Resnick SM, O'Brien R, Zonderman AB, An Y, Pletnikova O, et al. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent beta-amyloid and tau loads with divergent cognitive outcomes. Journal of neuropathology and experimental neurology. 2014;73(4):295–304. doi: 10.1097/NEN.0000000000000052 24607960
18. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology. 2000;54(11):2072–7. 10851365
19. APA. Diagnostic and statistical manual of mental disorders: DSM-III-R. Washington, DC: American Psychiatric Association; 1987.
20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44. 6610841
21. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine. 2004;256(3):183–94. doi: 10.1111/j.1365-2796.2004.01388.x 15324362
22. Breier M, Wahl S, Prehn C, Fugmann M, Ferrari U, Weise M, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE. 2014;9(2):e89728. doi: 10.1371/journal.pone.0089728 24586991
23. Hustad S, Eussen S, Midttun O, Ulvik A, van de Kant PM, Morkrid L, et al. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clinical chemistry. 2012;58(2):402–10. doi: 10.1373/clinchem.2011.174490 22194632
24. Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O'Brien R, et al. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med. 2017;14(3):e1002266. doi: 10.1371/journal.pmed.1002266 28323825
25. Toledo JB, Arnold M, Kastenmuller G, Chang R, Baillie RA, Han X, et al. Metabolic network failures in Alzheimer's disease: A biochemical road map. Alzheimers Dement. 2017;13(9):965–84. doi: 10.1016/j.jalz.2017.01.020 28341160
26. Jack CR Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of magnetic resonance imaging: JMRI. 2008;27(4):685–91. doi: 10.1002/jmri.21049 18302232
27. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132(Pt 8):2026–35. doi: 10.1093/brain/awp091 19416949
28. Toledo JB, Da X, Bhatt P, Wolk DA, Arnold SE, Shaw LM, et al. Relationship between plasma analytes and SPARE-AD defined brain atrophy patterns in ADNI. PLoS ONE. 2013;8(2):e55531. doi: 10.1371/journal.pone.0055531 23408997
29. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995;20:273–97.
30. Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC genomics. 2008;9 Suppl 1:S13.
31. Breiman L, Friedman JH, O R.A., Stone CJ. Classification and Regression Trees: Chapman and Hall/CRC; 1984.
32. Breiman L, Friedman JH, Olsen RA, Stone CJ. Classification and Regression Trees: Chapman & Hall/CRC; 1984.
33. Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, et al. Blood metabolite markers of preclinical Alzheimer's disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement. 2016.
34. Perneger TV. What's wrong with Bonferroni adjustments. BMJ (Clinical research ed. 1998;316(7139):1236–8. 9553006
35. Pelerin H, Jouin M, Lallemand MS, Alessandri JM, Cunnane SC, Langelier B, et al. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status. Prostaglandins, leukotrienes, and essential fatty acids. 2014;91(5):213–20. doi: 10.1016/j.plefa.2014.07.004 25123062
36. Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology. 2006;21:259–68. doi: 10.1152/physiol.00014.2006 16868315
37. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Progress in lipid research. 2014;53:1–17. doi: 10.1016/j.plipres.2013.10.002 24334113
38. Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochimica et biophysica acta. 2014;1838(2):532–45. doi: 10.1016/j.bbamem.2013.07.018 23899502
39. Jazvinscak Jembrek M, Hof PR, Simic G. Ceramides in Alzheimer's Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and Abeta Accumulation. Oxidative medicine and cellular longevity. 2015;2015:346783. doi: 10.1155/2015/346783 26090071
40. Osenkowski P, Ye W, Wang R, Wolfe MS, Selkoe DJ. Direct and potent regulation of gamma-secretase by its lipid microenvironment. The Journal of biological chemistry. 2008;283(33):22529–40. doi: 10.1074/jbc.M801925200 18539594
41. Bankaitis VA. The Cirque du Soleil of Golgi membrane dynamics. The Journal of cell biology. 2009;186(2):169–71. doi: 10.1083/jcb.200907008 19635838
42. Stoica BA, Movsesyan VA, Lea PMt, Faden AI. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Molecular and cellular neurosciences. 2003;22(3):365–82. 12691738
43. Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochimica et biophysica acta. 2010;1801(8):878–86. doi: 10.1016/j.bbalip.2010.05.003 20452460
44. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiology of aging. 2010;31(1):17–24. doi: 10.1016/j.neurobiolaging.2008.03.011 18455839
45. van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. Biochimica et biophysica acta. 2006;1758(12):1978–94. doi: 10.1016/j.bbamem.2006.06.009 16843432
46. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature reviews Molecular cell biology. 2008;9(2):139–50. doi: 10.1038/nrm2329 18216770
47. Fabelo N, Martin V, Marin R, Moreno D, Ferrer I, Diaz M. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. Neurobiology of aging. 2014;35(8):1801–12. doi: 10.1016/j.neurobiolaging.2014.02.005 24613671
48. Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. Journal of neurochemistry. 2010;114(2):430–9. doi: 10.1111/j.1471-4159.2010.06779.x 20456020
49. He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer's disease. Neurobiology of aging. 2010;31(3):398–408. doi: 10.1016/j.neurobiolaging.2008.05.010 18547682
50. Soderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G. Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. Journal of neurochemistry. 1992;59(5):1646–53. 1402910
51. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. The Journal of biological chemistry. 2012;287(4):2678–88. doi: 10.1074/jbc.M111.274142 22134919
52. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011;6(7):e21643. doi: 10.1371/journal.pone.0021643 21779331
53. Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T, et al. Metabolome in progression to Alzheimer's disease. Translational psychiatry. 2011;1:e57. doi: 10.1038/tp.2011.55 22832349
54. Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett AR, Mosley TH, et al. Prospective associations of plasma phospholipids and mild cognitive impairment/dementia among African Americans in the ARIC Neurocognitive Study. Alzheimers Dement (Amst). 2017;6:1–10.
55. Kolahdooz Z, Nasoohi S, Asle-Rousta M, Ahmadiani A, Dargahi L. Sphingosin-1-phosphate Receptor 1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabolism. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques. 2015;42(3):195–202. doi: 10.1017/cjn.2015.19 25860537
56. Asle-Rousta M, Kolahdooz Z, Oryan S, Ahmadiani A, Dargahi L. FTY720 (fingolimod) attenuates beta-amyloid peptide (Abeta42)-induced impairment of spatial learning and memory in rats. Journal of molecular neuroscience: MN. 2013;50(3):524–32. doi: 10.1007/s12031-013-9979-6 23435938
57. Whiley L, Sen A, Heaton J, Proitsi P, Garcia-Gomez D, Leung R, et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiology of aging. 2014;35(2):271–8. doi: 10.1016/j.neurobiolaging.2013.08.001 24041970
58. Simpson BN, Kim M, Chuang YF, Beason-Held L, Kitner-Triolo M, Kraut M, et al. Blood metabolite markers of cognitive performance and brain function in aging. J Cereb Blood Flow Metab. 2016;36(7):1212–23. doi: 10.1177/0271678X15611678 26661209
59. Zhao Z, Zlokovic BV. Blood-brain barrier: a dual life of MFSD2A? Neuron. 2014;82(4):728–30. doi: 10.1016/j.neuron.2014.05.012 24853933
60. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509(7501):503–6. doi: 10.1038/nature13241 24828044
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2018 Číslo 1
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Metamizol v liečbe pooperačnej bolesti u detí do 6 rokov veku
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
Najčítanejšie v tomto čísle
- Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study
- Pelvic inflammatory disease risk following negative results from chlamydia nucleic acid amplification tests (NAATs) versus non-NAATs in Denmark: A retrospective cohort
- PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease
- Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: A Phase 1 open-label clinical trial in healthy adults