#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Maternal age and offspring developmental vulnerability at age five: A population-based cohort study of Australian children


In a population-based cohort study of Australian children, Kathleen Falster and colleagues examine the associations between maternal age and developmental outcomes in children at age five.


Vyšlo v časopise: Maternal age and offspring developmental vulnerability at age five: A population-based cohort study of Australian children. PLoS Med 15(4): e32767. doi:10.1371/journal.pmed.1002558
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1002558

Souhrn

In a population-based cohort study of Australian children, Kathleen Falster and colleagues examine the associations between maternal age and developmental outcomes in children at age five.


Zdroje

1. Organisation for Economic Co-operation and Development (OECD). SF2.3 Age of mothers at childbirth and age-specific fertility; 2016 [cited 2016 Oct 24]. Database: OECD Family Database [Internet]. Available from: http://www.oecd.org/els/family/database.htm

2. Carolan M. The Graying of the Obstetric Population: Implications for the Older Mother. J Obstet Gynecol Neonatal Nurs. 2003;32(1):19–27. doi: 10.1177/0884217502239797 12570178

3. Goisis A, Schneider DC, Myrskyla M. The reversing association between advanced maternal age and child cognitive ability: evidence from three UK birth cohorts. Int J Epidemiol. 2017;46(3):850–9. doi: 10.1093/ije/dyw354 28177512

4. Tearne JE. Older maternal age and child behavioral and cognitive outcomes: a review of the literature. Fertil Steril. 2015;103(6):1381–91. doi: 10.1016/j.fertnstert.2015.04.027 26041693

5. Henderson M, Richards M, Stansfeld S, Hotopf M. The association between childhood cognitive ability and adult long-term sickness absence in three British birth cohorts: a cohort study. BMJ Open. 2012;2(2):e000777. doi: 10.1136/bmjopen-2011-000777 22466159

6. Schoon I. Childhood cognitive ability and adult academic attainment: evidence from three British cohort studies. Longit Life Course Stud. 2010;1:241–58.

7. Fall CHD, Sachdev HS, Osmond C, Restrepo-Mendez MC, Victora C, Martorell R, et al. Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration). Lancet Glob Health. 2015;3(7):e366–e77. doi: 10.1016/S2214-109X(15)00038-8 25999096

8. Kenny LC, Lavender T, McNamee R, O’Neill SM, Mills T, Khashan AS. Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PLoS ONE. 2013;8(2):e56583. doi: 10.1371/journal.pone.0056583 23437176

9. Lawlor DA, Mortensen L, Andersen AM. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes: a sibling study of 264 695 Danish women and their firstborn offspring. Int J Epidemiol. 2011;40(5):1205–14. doi: 10.1093/ije/dyr084 21752786

10. Loane M, Morris JK, Addor MC, Arriola L, Budd J, Doray B, et al. Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. Eur J Hum Genet. 2013;21(1):27–33. doi: 10.1038/ejhg.2012.94 22713804

11. Nybo Andersen AM, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320:1708–12. doi: 10.1136/bmj.320.7251.1708 10864550

12. Chittleborough CR, Lawlor DA, Lynch JW. Young maternal age and poor child development: Predictive validity from a birth cohort. Pediatrics. 2011;127(6):e1436–e44. doi: 10.1542/peds.2010-3222 21536608

13. Fergusson DM, Woodward LJ. Maternal age and educational and psychosocial outcomes in early adulthood. J Child Psychol Psychiatry. 1999;40:479–89. doi: 10.1111/1469-7610.00464 10190348

14. Jutte DP, Roos NP, Brownell MD, Briggs G, MacWilliam L, Roos LL. The ripples of adolescent motherhood: social, educational, and medical outcomes for children of teen and prior teen mothers. Acad Pediatr. 2010;10(5):293–301. doi: 10.1016/j.acap.2010.06.008 20674531

15. López Turley RN. Are children of young mothers disadvantaged because of their mother’s age or family background? Child development. 2003;74(2):465–74. 12705567

16. Shaw M, Lawlor DA, Najman JM. Teenage children of teenage mothers: psychological, behavioural and health outcomes from an Australian prospective longitudinal study. Soc Sci Med. 2006;62(10):2526–39. doi: 10.1016/j.socscimed.2005.10.007 16332404

17. Saha S, Barnett AG, Foldi C, Burne TH, Eyles DW, Buka SL, et al. Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med. 2009;6(3):e1000040. doi: 10.1371.journal/pmed.1000040

18. Sutcliffe AG, Barnes J, Belsky J, Gardiner J, Melhuish E. The health and development of children born to older mothers in the United Kingdom: observational study using longitudinal cohort data. BMJ. 2012;345:e5116. doi: 10.1136/bmj.e5116 22915663

19. Fergusson D, Lynskey M. Maternal age and cognitive and behavioural outcomes in middle childhood. Paediatr Perinat Epidemiol. 1993;7(1):77–91. 8426834

20. Trillingsgaard T, Sommer D. Associations between older maternal age, use of sanctions, and children’s socio-emotional development through 7, 11, and 15 years. Eur J Dev Psychol. 2016:1–15. doi: 10.1080/17405629.2016.1266248

21. Myrskyla M, Silventoinen K, Tynelius P, Rasmussen F. Is later better or worse? Association of advanced parental age with offspring cognitive ability among half a million young Swedish men. Am J Epidemiol. 2013;177(7):649–55. doi: 10.1093/aje/kws237 23467498

22. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 2015;12(10):e1001885. doi: 10.1371/journal.pmed.1001885 26440803

23. Brinkman SA, Gregory TA, Goldfeld S, Lynch JW, Hardy M. Data resource profile: the Australian Early Development Index (AEDI). Int J Epidemiol. 2014;43(4):1089–96. doi: 10.1093/ije/dyu085 24771275

24. Falster K, Jorgensen M, Hanly M, Banks E, Brownell M, Eades S, et al. Data Resource Profile: Seeding Success: A cross-sectoral data resource for early childhood health and development research in Australian Aboriginal and non-Aboriginal children. Int J Epidemiol. 2017. doi: 10.1093/ije/dyx051 28498912

25. Falster K, Jorm L, Eades S, Lynch J, Banks E, Brownell M, et al. What factors contribute to positive early childhood health and development in Australian Aboriginal children? Protocol for a population-based cohort study using linked administrative data (The Seeding Success Study). BMJ Open. 2015;5(5):e007898. doi: 10.1136/bmjopen-2015-007898 25986640

26. Australian Government. A Snapshot of Early Childhood Development in Australia 2012—Australian Early Development Index (AEDI) National Report. Australian Government. Canberra: Australian Government, 2012.

27. Brinkman SA, Silburn S, Lawrence D, Goldfeld S, Sayers M, Oberklaid F. Investigating the validity of the Australian early development index. Early Educ Dev. 2007;18(3):427–51.

28. Guhn M, Gadermann A, Zumbo BD. Does the EDI measure school readiness in the same way across different groups of children? Early Educ Dev. 2007;18(3):453–72.

29. Janus M, Brinkman SA, Duku EK. Validity and Psychometric Properties of the Early Development Instrument in Canada, Australia, United States, and Jamaica. Soc Indic Res. 2011;103(2):283–97.

30. Janus M, Offord D. Development and psychometric properties of the Early Development Instrument (EDI): A measure of children’s school readiness. Can J Behav Sci. 2007;39(1):1–22.

31. Muhajarine N, Puchala C, Janus M. Does the EDI Equivalently Measure Facets of School Readiness for Aboriginal and Non-Aboriginal children? Soc Indic Res. 2011;103(2):299–314. doi: 10.1007/s11205-011-9847-0

32. Janus M, Brinkman S, Duku E, Hertzman C, Santos R, Sayers M, et al. The Early Development Instrument: population-based measure for communities: a handbook on development, properties and use. Canada: Offord Centre for Child Studies, 2007.

33. Taylor D, Lange J. Social Applications of Geographical Information Systems: technical tools for social innovation. Aust Geogr. 2016;47(4):417–33. doi: 10.1080/00049182.2016.1231050

34. Australian Bureau of Statistics. Socio-Economic Indexes for Areas (SEIFA) Canberra: ABS, 2011.

35. van Buuren S. Multiple imputation of discrete and continous data by fully conditional specification. Stat Method Med Res. 2007;16:219–42.

36. Rubin DB. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.

37. Kleinman LC, Norton EC. What’s the Risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression. Health Serv Res. 2009;44(1):288–302. doi: 10.1111/j.1475-6773.2008.00900.x 18793213

38. Muller CJ, MacLehose RF. Estimating predicted probabilities from logistic regression: different methods correspond to different target populations. Int J Epidemiol. 2014;43(3):962–70. doi: 10.1093/ije/dyu029 24603316

39. Norton EC, Miller MM, Kleinman LC. Computing adjusted risk ratios and risk differences in Stata. Stata Journal. 2013;13(2):492–509.

40. StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP. 2011.

41. Centre for Epidemiology and Evidence. New South Wales Mothers and Babies 2010. 2012.

42. Gaulden ME. Maternal age effect: The enigma of Down syndrome and other trisomic conditions. Mutat Res. 1992;296(1):69–88. doi: 10.1016/0165-1110(92)90033-6

43. Loane M, Dolk H, Morris JK, Group EW. Maternal age-specific risk of non-chromosomal anomalies. BJOG: an international journal of obstetrics and gynaecology. 2009;116(8):1111–9. doi: 10.1111/j.1471-0528.2009.02227.x 19485989

44. AIHW NPSU: Grayson N HJ, Sullivan EA,. Use of routinely collected national data sets for reporting on induced abortion in Australia. AIHW Cat. No. PER 30. Sydney: AIHW National Perinatal Statistics Unit (Perinatal Statistics Series No. 17). 2005.

45. Restrepo-Mendez MC, Lawlor DA, Horta BL, Matijasevich A, Santos IS, Menezes AM, et al. The association of maternal age with birthweight and gestational age: a cross-cohort comparison. Paediatr Perinat Epidemiol. 2015;29(1):31–40. doi: 10.1111/ppe.12162 25405673

46. Chang Z, Lichtenstein P, D’Onofrio BM, Almqvist C, Kuja-Halkola R, Sjolander A, et al. Maternal age at childbirth and risk for ADHD in offspring: a population-based cohort study. Int J Epidemiol. 2014;43(6):1815–24. doi: 10.1093/ije/dyu204 25355726

47. Tearne JE, Robinson M, Jacoby P, Li J, Newnham J, McLean N. Does late childbearing increase the risk for behavioural problems in children? A longitudinal cohort study. Paediatr Perinat Epidemiol. 2015;29(1):41–9. doi: 10.1111/ppe.12165 25487742

48. Barclay K, Myrskyla M. Advanced maternal age and offspring outcomes: reproductive aging and counterbalancing period trends. Popul Dev Rev. 2016;42(1):69–94.

49. Chittleborough CR, Searle AK, Smithers LG, Brinkman S, Lynch JW. How well can poor child development be predicted from early life characteristics? A whole-of-population data linkage study. Early Child Res Q. 2016;35:19–30. doi: 10.1016/j.ecresq.2015.10.006

50. Boyd PA, DeVigan C, Khoshnood B, Loane M, Garne E, Dolk H. Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down’s syndrome. BJOG. 2008;115(6):689–96. doi: 10.1111/j.1471-0528.2008.01700.x 18410651

51. Bentley JP, Roberts CL, Bowen JR, Martin AJ, Morris JM, Nassar N. Planned Birth Before 39 Weeks and Child Development: A Population-Based Study. Pediatrics. 2016;138(6). doi: 10.1542/peds.2016-2002 27940704

52. MacKay DF, Smith GC, Dobbie R, Pell JP. Gestational age at delivery and special educational need: retrospective cohort study of 407,503 schoolchildren. PLoS Med. 2010;7(6):e1000289. doi: 10.1371/journal.pmed.1000289 20543995

53. Stein Z, Susser M. The risks of having children in later life. Western J Med. 2000;173:295–6.

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2018 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#