Intensification with dipeptidyl peptidase-4 inhibitor, insulin, or thiazolidinediones and risks of all-cause mortality, cardiovascular diseases, and severe hypoglycemia in patients on metformin-sulfonylurea dual therapy: A retrospective cohort study
Autoři:
Carlos K. H. Wong aff001; Kenneth K. C. Man aff002; Margaret Shi aff001; Esther W. Chan aff002; Chu Wa Ho aff001; Emily T. Y. Tse aff001; Ian C. K. Wong aff002; Cindy L. K. Lam aff001
Působiště autorů:
Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
aff001; Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
aff002; Research Department of Policy and Practice, School of Pharmacy, University College London, London, United Kingdom
aff003
Vyšlo v časopise:
Intensification with dipeptidyl peptidase-4 inhibitor, insulin, or thiazolidinediones and risks of all-cause mortality, cardiovascular diseases, and severe hypoglycemia in patients on metformin-sulfonylurea dual therapy: A retrospective cohort study. PLoS Med 16(12): e32767. doi:10.1371/journal.pmed.1002999
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002999
Souhrn
Background
Although patients with type 2 diabetes mellitus (T2DM) may fail to achieve adequate hemoglobin A1c (HbA1c) control despite metformin-sulfonylurea (Met-SU) dual therapy, a third-line glucose-lowering medication—including dipeptidyl peptidase-4 inhibitor (DPP4i), insulin, or thiazolidinedione (TZD)—can be added to achieve this. However, treatment effects of intensification with the medications on the risk of severe hypoglycemia (SH), cardiovascular disease (CVD), and all-cause mortality are uncertain. Study aim was to compare the risks of all-cause mortality, CVD, and SH among patients with T2DM on Met-SU dual therapy intensified with DPP4i, insulin, or TZD.
Methods and findings
We analyzed a retrospective cohort data of 17,293 patients with T2DM who were free from CVD and on Met-SU dual therapy and who were intensified with DPP4i (n = 8,248), insulin (n = 6,395), or TZD (n = 2,650) from 2006 to 2017. Propensity-score weighting was used to balance out baseline covariates across groups. Hazard ratios (HRs) for all-cause mortality, CVD, and SH were assessed using Cox proportional hazard models. Mean age of all patients was 58.56 ± 11.41 years. All baseline covariates achieved a balance across the 3 groups. Over a mean follow-up period of 34 months with 49,299 person-years, cumulative incidences of all-cause mortality, SH, and CVD were 0.061, 0.119, and 0.074, respectively. Patients intensified with insulin had higher risk of all-cause mortality (HR = 2.648, 95% confidence interval [CI] 2.367–2.963, p < 0.001; 2.352, 95% CI 2.123–2.605, p < 0.001) than those intensified with TZD and DPP4i, respectively. Insulin users had the greatest risk of SH (HR = 1.198, 95% CI 1.071–1.340, p = 0.002; 1.496, 95% CI 1.342–1.668, p < 0.001) compared with TZD and DPP4i users, respectively. Comparing between TZDs and DPP4i, TZDs were associated with a higher risk of SH (HR = 1.249, 95% CI 1.099–1.419, p < 0.001) but not all-cause mortality (HR = 0.888, 95% CI 0.776–1.016, p = 0.084) or CVD (HR = 1.005, 95% CI 0.915–1.104, p = 0.925). Limitations of this study included the lack of data regarding lifestyle, drug adherence, time-varying factors, patients’ motivation, and cost considerations. A limited duration of patients intensifying with TZD might also weaken the strength of study results.
Conclusions
Our results indicated that, for patients with T2DM who are on Met-SU dual therapy, the addition of DPP4i was a preferred third-line medication among 3 options, with the lowest risks of mortality and SH and posing no increased risk for CVD events when compared to insulin and TZD. Intensification with insulin had the greatest risk of mortality and SH events.
Klíčová slova:
Death rates – Insulin – Drug therapy – Cardiology – Cardiovascular diseases – Hypoglycemia
Zdroje
1. Gaster B, Hirsch IB. The Effects of Improved Glycemic Control on Complications in Type 2 Diabetes. JAMA internal medicine. 1998;158(2):134–40. doi: 10.1001/archinte.158.2.134 9448551
2. 7. Approaches to Glycemic Treatment. Diabetes Care. 2015;38(Supplement 1):S41. doi: 10.2337/dc15-S010 25537707
3. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9. Epub 2014/12/30. doi: 10.2337/dc14-2441 25538310.
4. National Institute for Health Health and Care Excellence (NICE). Type 2 Diabetes in Adults: Management: NICE guideline [NG28]. London: National Institute for Health and Care Excellence (UK), 2015
5. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes care. 2018;41(12):2669–701. Epub 2018/10/07. doi: 10.2337/dci18-0033 30291106; PubMed Central PMCID: PMC6245208.
6. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S90–s102. Epub 2018/12/19. doi: 10.2337/dc19-S009 30559235.
7. Canadian Agency for Drugs and Technologies in Health. Optimal use recommendations for second and third-line therapy for patients with type 2 diabetes. CADTH optimal use report. 2013;3(1d).
8. Vijan S, Sussman JB, Yudkin JS, Hayward RA. Effect of patients’ risks and preferences on health gains with plasma glucose level lowering in type 2 diabetes mellitus. JAMA Internal Medicine. 2014;174(8):1227–34. doi: 10.1001/jamainternmed.2014.2894 24979148
9. Scheen JA. Cardiovascular Effects of New Oral Glucose-Lowering Agents: DPP-4 and SGLT-2 Inhibitors. Circulation Research. 2018;122(10):1439–59. doi: 10.1161/CIRCRESAHA.117.311588 29748368
10. Jil M, Rajnikant M, Richard D, Iskandar I. The effects of dual-therapy intensification with insulin or dipeptidylpeptidase-4 inhibitor on cardiovascular events and all-cause mortality in patients with type 2 diabetes: A retrospective cohort study. Diabetes Vasc Dis Re. 2017;14(4):295–303. doi: 10.1177/1479164116687102 WOS:000403606900004. 28330386
11. Yu CG, Fu Y, Fang Y, Zhang N, Sun RX, Zhao D, et al. Fighting type-2 diabetes: present and future perspectives. Current Medicinal Chemistry. 2017;09:09. doi: 10.2174/0929867324666171009115356 28990512.
12. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2018 executive summary. Endocrine Practice. 2018;24(1):91–120. doi: 10.4158/CS-2017-0153 29368965
13. Anyanwagu U, Mamza J, Mehta R, Donnelly R, Idris I. Cardiovascular events and all-cause mortality with insulin versus glucagon-like peptide-1 analogue in type 2 diabetes. Heart. 2016;102(19):1581–7. Epub 2016/05/25. doi: 10.1136/heartjnl-2015-309164 27217068.
14. Zaccardi F, Dhalwani NN, Dales J, Mani H, Khunti K, Davies MJ, et al. Comparison of glucose-lowering agents after dual therapy failure in type 2 diabetes: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(4):985–97. doi: 10.1111/dom.13185 WOS:000427114800023. 29205774
15. Lozano-Ortega G, Goring S, Bennett HA, Bergenheim K, Sternhufvud C, Mukherjee J. Network meta-analysis of treatments for type 2 diabetes mellitus following failure with metformin plus sulfonylurea. Current medical research and opinion. 2016;32(5):807–16. Epub 2015/12/25. doi: 10.1185/03007995.2015.1135110 26700585.
16. Lee CM, Woodward M, Colagiuri S. Triple therapy combinations for the treatment of type 2 diabetes—A network meta-analysis. Diabetes research and clinical practice. 2016;116:149–58. Epub 2016/06/21. doi: 10.1016/j.diabres.2016.04.037 27321330.
17. Downes MJ, Bettington EK, Gunton JE, Turkstra E. Triple therapy in type 2 diabetes; a systematic review and network meta-analysis. PeerJ. 2015;3:e1461. Epub 2015/12/15. doi: 10.7717/peerj.1461 26664803; PubMed Central PMCID: PMC4675096.
18. Ou HT, Chang KC, Li CY, Wu JS. Comparative cardiovascular risks of dipeptidyl peptidase 4 inhibitors with other second- and third-line antidiabetic drugs in patients with type 2 diabetes. British journal of clinical pharmacology. 2017;83(7):1556–70. Epub 2017/01/22. doi: 10.1111/bcp.13241 28109184; PubMed Central PMCID: PMC5465327.
19. Man KKC, Coghill D, Chan EW, Lau WCY, Hollis C, Liddle E, et al. Association of Risk of Suicide Attempts With Methylphenidate Treatment. JAMA psychiatry. 2017;74(10):1048–55. Epub 2017/07/27. doi: 10.1001/jamapsychiatry.2017.2183 28746699; PubMed Central PMCID: PMC5710471.
20. Man KKC, Chan EW, Ip P, Coghill D, Simonoff E, Chan PKL, et al. Prenatal antidepressant use and risk of attention-deficit/hyperactivity disorder in offspring: population based cohort study. BMJ (Clinical research ed). 2017;357:j2350. Epub 2017/06/02. doi: 10.1136/bmj.j2350 28566274; PubMed Central PMCID: PMC5450015.
21. Wong AY, Wong IC, Chui CS, Lee EH, Chang WC, Chen EY, et al. Association Between Acute Neuropsychiatric Events and Helicobacter pylori Therapy Containing Clarithromycin. JAMA internal medicine. 2016;176(6):828–34. Epub 2016/05/03. doi: 10.1001/jamainternmed.2016.1586 27136661.
22. Law SWY, Lau WCY, Wong ICK, Lip GYH, Mok MT, Siu C-W, et al. Sex-Based Differences in Outcomes of Oral Anticoagulation in Patients With Atrial Fibrillation. Journal of the American College of Cardiology. 2018;72(3):271–82. doi: 10.1016/j.jacc.2018.04.066 30012320
23. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Statistics in Medicine. 2011;30(4):377–99. doi: 10.1002/sim.4067 21225900
24. Suissa S. Lower Risk of Death With SGLT2 Inhibitors in Observational Studies: Real or Bias? Diabetes care. 2018;41(1):6–10. doi: 10.2337/dc17-1223 J Diabetes Care. 29263192
25. Brookhart MA, Wyss R, Layton JB, Stürmer T. Propensity Score Methods for Confounding Control in Nonexperimental Research. Circulation: Cardiovascular Quality and Outcomes. 2013;6(5):604–11. doi: 10.1161/CIRCOUTCOMES.113.000359 24021692
26. Leyrat C, Seaman SR, White IR, Douglas I, Smeeth L, Kim J, et al. Propensity score analysis with partially observed covariates: How should multiple imputation be used? Statistical methods in medical research. 2019;28(1):3–19. Epub 2017/06/03. doi: 10.1177/0962280217713032 28573919; PubMed Central PMCID: PMC6313366.
27. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behavioral Research. 2011;46(3):399–424. doi: 10.1080/00273171.2011.568786 21818162
28. Haneuse S, VanderWeele TJ, Arterburn D. Using the E-Value to Assess the Potential Effect of Unmeasured Confounding in Observational Studies. Jama. 2019;321(6):602–3. Epub 2019/01/25. doi: 10.1001/jama.2018.21554 30676631.
29. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Annals of internal medicine. 2017;167(4):268–74. Epub 2017/07/12. doi: 10.7326/M16-2607 28693043.
30. Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web Site and R Package for Computing E-values. Epidemiology (Cambridge, Mass). 2018;29(5):e45–e7. Epub 2018/06/19. doi: 10.1097/ede.0000000000000864 PubMed Central PMCID: PMC6066405. 29912013
31. Scheen AJ. Pharmacotherapy of ‘treatment resistant’ type 2 diabetes. Expert Opinion on Pharmacotherapy. 2017;18(5):503–15. doi: 10.1080/14656566.2017.1297424 28276972
32. Currie CJ, Poole CD, Evans M, Peters JR, Morgan CL. Mortality and other important diabetes-related outcomes with insulin vs other antihyperglycemic therapies in type 2 diabetes. The Journal of clinical endocrinology and metabolism. 2013;98(2):668–77. Epub 2013/01/31. doi: 10.1210/jc.2012-3042 23372169.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2019 Číslo 12
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Ambient particulate matter pollution and adult hospital admissions for pneumonia in urban China: A national time series analysis for 2014 through 2017
- Association between gestational weight gain and severe adverse birth outcomes in Washington State, US: A population-based retrospective cohort study, 2004–2013
- Adherence to the 2017 French dietary guidelines and adult weight gain: A cohort study
- Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis