#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ambient particulate matter pollution and adult hospital admissions for pneumonia in urban China: A national time series analysis for 2014 through 2017


Autoři: Yaohua Tian aff001;  Hui Liu aff003;  Yiqun Wu aff003;  Yaqin Si aff005;  Man Li aff003;  Yao Wu aff003;  Xiaowen Wang aff003;  Mengying Wang aff003;  Libo Chen aff005;  Chen Wei aff005;  Tao Wu aff003;  Pei Gao aff003;  Yonghua Hu aff003
Působiště autorů: Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China aff001;  Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China aff002;  Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China aff003;  Medical Informatics Center, Peking University, Beijing, China aff004;  Beijing HealthCom Data Technology Co. Ltd, Beijing, China aff005;  Key Laboratory of Molecular Cardiovascular (Peking University), Ministry of Education, Beijing, China aff006
Vyšlo v časopise: Ambient particulate matter pollution and adult hospital admissions for pneumonia in urban China: A national time series analysis for 2014 through 2017. PLoS Med 16(12): e1003010. doi:10.1371/journal.pmed.1003010
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1003010

Souhrn

Background

The effects of ambient particulate matter (PM) pollution on pneumonia in adults are inconclusive, and few scientific data on a national scale have been generated in low- or middle-income countries, despite their much higher PM concentrations. We aimed to examine the association between PM levels and hospital admissions for pneumonia in Chinese adults.

Methods and findings

A nationwide time series study was conducted in China between 2014 and 2017. Information on daily hospital admissions for pneumonia for 2014–2017 was collected from the database of Urban Employee Basic Medical Insurance (UEBMI), which covers 282.93 million adults. Associations of PM concentrations and hospital admissions for pneumonia were estimated for each city using a quasi-Poisson regression model controlling for time trend, temperature, relative humidity, day of the week, and public holiday and then pooled by random-effects meta-analysis. Meta-regression models were used to investigate potential effect modifiers, including cities’ annual-average air pollutants concentrations, temperature, relative humidity, gross domestic product (GDP) per capita, and coverage rates by the UEBMI. More than 4.2 million pneumonia admissions were identified in 184 Chinese cities during the study period. Short-term elevations in PM concentrations were associated with increased pneumonia admissions. At the national level, a 10-μg/m3 increase in 3-day moving average (lag 0–2) concentrations of PM2.5 (PM ≤2.5 μm in aerodynamic diameter) and PM10 (PM ≤10 μm in aerodynamic diameter) was associated with 0.31% (95% confidence interval [CI] 0.15%–0.46%, P < 0.001) and 0.19% (0.11%–0.30%, P < 0.001) increases in hospital admissions for pneumonia, respectively. The effects of PM10 were stronger in cities with higher temperatures (percentage increase, 0.031%; 95% CI 0.003%–0.058%; P = 0.026) and relative humidity (percentage increase, 0.011%; 95% CI 0%–0.022%; P = 0.045), as well as in the elderly (percentage increase, 0.10% [95% CI 0.02%–0.19%] for people aged 18–64 years versus 0.32% [95% CI 0.22%–0.39%] for people aged ≥75 years; P < 0.001). The main limitation of the present study was the unavailability of data on individual exposure to PM pollution.

Conclusions

Our findings suggest that there are significant short-term associations between ambient PM levels and increased hospital admissions for pneumonia in Chinese adults. These findings support the rationale that further limiting PM concentrations in China may be an effective strategy to reduce pneumonia-related hospital admissions.

Klíčová slova:

Hospitals – Pollution – Particulates – China – Aerodynamics – Air pollution – Pneumonia – Humidity


Zdroje

1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;1(44):511159.

2. Morimoto K, Suzuki M, Ishifuji T, Yaegashi M, Asoh N, Hamashige N, et al. The burden and etiology of community-onset pneumonia in the aging Japanese population: a multicenter prospective study. PLoS ONE. 2015;10(3):e0122247. doi: 10.1371/journal.pone.0122247 25822890

3. Guan X, Silk BJ, Li W, Fleischauer AT, Xing X, Jiang X, et al. Pneumonia incidence and mortality in Mainland China: systematic review of Chinese and English literature, 1985–2008. PLoS ONE. 2010;5(7):e11721. doi: 10.1371/journal.pone.0011721 20668535

4. Fine MJ, Smith MA, Carson CA, Mutha SS, Sankey SS, Weissfeld LA, et al. Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis. JAMA. 1996;275(2):134–41. 8531309

5. Corrales-Medina VF, Alvarez KN, Weissfeld LA, Angus DC, Chirinos JA, Chang C-CH, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA. 2015;313(3):264–74. doi: 10.1001/jama.2014.18229 25602997

6. Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax. 2012;67(1):71–9. doi: 10.1136/thx.2009.129502 20729232

7. Wroe PC, Finkelstein JA, Ray GT, Linder JA, Johnson KM, Rifas-Shiman S, et al. Aging population and future burden of pneumococcal pneumonia in the United States. J Infect Dis. 2012;205(10):1589–92. doi: 10.1093/infdis/jis240 22448012

8. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–42. doi: 10.1016/S0140-6736(02)11274-8 12401268

9. Anderson HR, Atkinson RW, Bremner SA, Marston L. Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk? Eur Respir J Suppl. 2003;40:39s–46s. doi: 10.1183/09031936.03.00402203 12762573

10. Gilmour PS, Rahman I, Donaldson K, MacNee W. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol. 2003;284(3):22.

11. Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect. 2002;110(8):749–55. doi: 10.1289/ehp.02110749 12153754

12. Hou W, Xu X, Lei Y, Cao J, Zhang Y, Chen L, et al. The role of the PM2.5-associated metals in pathogenesis of child Mycoplasma Pneumoniae infections: a systematic review. Environ Sci Pollut Res Int. 2016;23(11):10604–14. doi: 10.1007/s11356-016-6535-2 27040534

13. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006;295(10):1127–34. doi: 10.1001/jama.295.10.1127 16522832

14. Medina-Ramon M, Zanobetti A, Schwartz J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol. 2006;163(6):579–88. doi: 10.1093/aje/kwj078 16443803

15. Strosnider HM, Chang HH, Darrow LA, Liu Y, Vaidyanathan A, Strickland MJ. Age-Specific Associations of Ozone and Fine Particulate Matter with Respiratory Emergency Department Visits in the United States. Am J Respir Crit Care Med. 2019;199(7):882–90. doi: 10.1164/rccm.201806-1147OC 30277796

16. Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Lefler JS, et al. Short-Term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection. Am J Respir Crit Care Med. 2018;198(6):759–66. doi: 10.1164/rccm.201709-1883OC 29652174

17. Host S, Larrieu S, Pascal L, Blanchard M, Declercq C, Fabre P, et al. Short-term associations between fine and coarse particles and hospital admissions for cardiorespiratory diseases in six French cities. Occup Environ Med. 2008;65(8):544–51. doi: 10.1136/oem.2007.036194 18056749

18. Tian L, Qiu H, Pun VC, Lin H, Ge E, Chan JC, et al. Ambient carbon monoxide associated with reduced risk of hospital admissions for respiratory tract infections. Am J Respir Crit Care Med. 2013;188(10):1240–5. doi: 10.1164/rccm.201304-0676OC 23944864

19. Qiu H, Tian LW, Pun VC, Ho KF, Wong TW, Yu IT. Coarse particulate matter associated with increased risk of emergency hospital admissions for pneumonia in Hong Kong. Thorax. 2014;69(11):1027–33. doi: 10.1136/thoraxjnl-2014-205429 25164925

20. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Dentener F, et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ Sci Technol. 2016;50(1):79–88. doi: 10.1021/acs.est.5b03709 26595236

21. Xu Q, Li X, Wang S, Wang C, Huang F, Gao Q, et al. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013. PLoS ONE. 2016;11(4):e0153099. doi: 10.1371/journal.pone.0153099 27054582

22. Zhang Z, Hong Y, Liu N. Association of ambient Particulate matter 2.5 with intensive care unit admission due to pneumonia: a distributed lag non-linear model. Sci Rep. 2017;7(1):8679. doi: 10.1038/s41598-017-08984-x 28819316

23. Yip WC, Hsiao WC, Chen W, Hu S, Ma J, Maynard A. Early appraisal of China's huge and complex health-care reforms. Lancet. 2012;379(9818):833–42. doi: 10.1016/S0140-6736(11)61880-1 22386036

24. Tian Y, Liu H, Zhao Z, Xiang X, Li M, Juan J, et al. Association between ambient air pollution and daily hospital admissions for ischemic stroke: A nationwide time series analysis. PLoS Med. 2018;15(10):e1002668. doi: 10.1371/journal.pmed.1002668 30286080

25. Tian Y, Liu H, Si Y, Cao Y, Song J, Li M, et al. Association between temperature variability and daily hospital admissions for cause-specific cardiovascular disease in urban China: A national time-series study. PLoS Med. 2019;16(1):e1002738. doi: 10.1371/journal.pmed.1002738 30689640

26. Zhao B, Su Y, He S, Zhong M, Cui G. Evolution and comparative assessment of ambient air quality standards in China. J Integr Environ Sci. 2016;13(2–4):85–102.

27. Chen R, Yin P, Meng X, Liu C, Wang L, Xu X, et al. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. Am J Respir Crit Care Med. 2017;196(1):73–81. doi: 10.1164/rccm.201609-1862OC 28248546

28. Yin P, Chen R, Wang L, Meng X, Liu C, Niu Y, et al. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities. Environ Health Perspect. 2017;125(11):117006. doi: 10.1289/EHP1849 29212061

29. Chen R, Kan H, Chen B, Huang W, Bai Z, Song G, et al. Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study. Am J Epidemiol. 2012;175(11):1173–81. doi: 10.1093/aje/kwr425 22510278

30. Yin P, He G, Fan M, Chiu KY, Liu C, Xue A, et al. Particulate air pollution and mortality in 38 of China's largest cities: time series analysis. BMJ. 2017;356:j667. doi: 10.1136/bmj.j667 28292780

31. Peng RD, Chang HH, Bell ML, McDermott A, Zeger SL, Samet JM, et al. Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA. 2008;299(18):2172–9. doi: 10.1001/jama.299.18.2172 18477784

32. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N Engl J Med. 2019;381(8):705–15. doi: 10.1056/NEJMoa1817364 31433918

33. Chen R, Yin P, Meng X, Wang L, Liu C, Niu Y, et al. Associations between Coarse Particulate Matter Air Pollution and Cause-Specific Mortality: A Nationwide Analysis in 272 Chinese Cities. Environ Health Perspect. 2019;127(1):17008. doi: 10.1289/EHP2711 30702928

34. Samoli E, Analitis A, Touloumi G, Schwartz J, Anderson HR, Sunyer J, et al. Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project. Environ Health Perspect. 2005;113(1):88–95. doi: 10.1289/ehp.7387 15626653

35. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326(7382):219. doi: 10.1136/bmj.326.7382.219 12543843

36. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22(17):2693–710. doi: 10.1002/sim.1482 12939780

37. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999;18(20):2693–708. doi: 10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v 10521860

38. Huang Y, Shen H, Chen H, Wang R, Zhang Y, Su S, et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ Sci Technol. 2014;48(23):13834–43. doi: 10.1021/es503696k 25347079

39. Duan Z, Han X, Bai Z, Yuan Y. Fine particulate air pollution and hospitalization for pneumonia: a case-crossover study in Shijiazhuang, China. Air Qual Atmos Hlth. 2016;9(7):723–33.

40. Lippmann M, Schlesinger RB. Toxicological bases for the setting of health-related air pollution standards. Annu Rev Public Health. 2000;21:309–33. doi: 10.1146/annurev.publhealth.21.1.309 10884956

41. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc. 1997;47(12):1238–49. doi: 10.1080/10473289.1997.10464074 9448515

42. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42. doi: 10.1080/10473289.2006.10464485 16805397

43. Becker S, Soukup JM. Exposure to urban air particulates alters the macrophage-mediated inflammatory response to respiratory viral infection. J Toxicol Environ Health A. 1999;57(7):445–57. doi: 10.1080/009841099157539 10494914

44. Tsai SS, Yang CY. Fine particulate air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. J Toxicol Environ Health A. 2014;77(4):192–201. doi: 10.1080/15287394.2013.853337 24555678

45. Liu H, Tian Y, Xiang X, Juan J, Song J, Cao Y, et al. Ambient Particulate Matter Concentrations and Hospital Admissions in 26 of China's Largest Cities: A Case-Crossover Study. Epidemiology. 2018;29(5):649–57. doi: 10.1097/EDE.0000000000000869 29870428

46. Seaton A, Dennekamp M. Hypothesis: ill health associated with low concentrations of nitrogen dioxide—an effect of ultrafine particles?: Thorax. 2003;58(12):1012–5. doi: 10.1136/thorax.58.12.1012 14645960

47. Requia WJ, Koutrakis P, Roig HL, Adams MD. Spatiotemporal analysis of traffic emissions in over 5000 municipal districts in Brazil. J Air Waste Manag Assoc. 2016;66(12):1284–93. doi: 10.1080/10962247.2016.1221367 27623986

48. Gao J, Wang K, Wang Y, Liu S, Zhu C, Hao J, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ Pollut. 2018;233:714–24. doi: 10.1016/j.envpol.2017.10.123 29126093

49. Janssens JP. Aging of the respiratory system: impact on pulmonary function tests and adaptation to exertion. Clin Chest Med. 2005;26(3):469–84. doi: 10.1016/j.ccm.2005.05.004 16140139

50. Basu R, Pearson D, Malig B, Broadwin R, Green R. The effect of high ambient temperature on emergency room visits. Epidemiology. 2012;23(6):813–20. doi: 10.1097/EDE.0b013e31826b7f97 23007039

51. Onozuka D, Hashizume M, Hagihara A. Impact of weather factors on Mycoplasma pneumoniae pneumonia. Thorax. 2009;64(6):507–11. doi: 10.1136/thx.2008.111237 19318345

52. Macdonald RW, Harner T, Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ. 2005;342(1–3):5–86. doi: 10.1016/j.scitotenv.2004.12.059 15866268

53. Chen F, Fan Z, Qiao Z, Cui Y, Zhang M, Zhao X, et al. Does temperature modify the effect of PM10 on mortality? A systematic review and meta-analysis. Environ Pollut. 2017;224:326–35. doi: 10.1016/j.envpol.2017.02.012 28215581

54. Chen R, Peng RD, Meng X, Zhou Z, Chen B, Kan H. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES). Sci Total Environ. 2013;451:259–65.

55. Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA, et al. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environ Health. 2011;10(61):10–61.

56. Thompson S, Kaptoge S, White I, Wood A, Perry P, Danesh J. Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies. Int J Epidemiol. 2010;39(5):1345–59. doi: 10.1093/ije/dyq063 20439481

57. Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med. 2000;19(24):3417–32. doi: 10.1002/1097-0258(20001230)19:24<3417::aid-sim614>3.0.co;2-l 11122505

58. Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, et al. Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA. 2017;318(24):2446–56. doi: 10.1001/jama.2017.17923 29279932

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#