A Viral microRNA Down-Regulates Multiple Cell Cycle Genes through mRNA 5′UTRs
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs.
Vyšlo v časopise:
A Viral microRNA Down-Regulates Multiple Cell Cycle Genes through mRNA 5′UTRs. PLoS Pathog 6(6): e32767. doi:10.1371/journal.ppat.1000967
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000967
Souhrn
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs.
Zdroje
1. BartelDP
2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281 297
2. BartelDP
2009 MicroRNAs: target recognition and regulatory functions. Cell 136 215 233
3. Griffiths-JonesS
GrocockRJ
van DongenS
BatemanA
EnrightAJ
2006 miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34 D140 144
4. GottweinE
CullenBR
2008 Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3 375 387
5. GreyF
HookL
NelsonJ
2008 The functions of herpesvirus-encoded microRNAs. Med Microbiol Immunol 197 261 267
6. DunnW
TrangP
ZhongQ
YangE
van BelleC
2005 Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 7 1684 1695
7. GreyF
AntoniewiczA
AllenE
SaugstadJ
McSheaA
2005 Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79 12095 12099
8. PfefferS
SewerA
Lagos-QuintanaM
SheridanR
SanderC
2005 Identification of microRNAs of the herpesvirus family. Nat Methods 2 269 276
9. GreyF
MeyersH
WhiteEA
SpectorDH
NelsonJ
2007 A Human Cytomegalovirus-Encoded microRNA Regulates Expression of Multiple Viral Genes Involved in Replication. PLoS Pathog 3 e163
10. Stern-GinossarN
ElefantN
ZimmermannA
WolfDG
SalehN
2007 Host immune system gene targeting by a viral miRNA. Science 317 376 381
11. MurphyE
VanicekJ
RobinsH
ShenkT
LevineAJ
2008 Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci U S A 105 5453 5458
12. UmbachJL
KramerMF
JurakI
KarnowskiHW
CoenDM
2008 MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454 780 783
13. ZiegelbauerJM
SullivanCS
GanemD
2009 Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41 130 134
14. FarhKK
GrimsonA
JanC
LewisBP
JohnstonWK
2005 The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310 1817 1821
15. LewisBP
BurgeCB
BartelDP
2005 Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 15 20
16. LimLP
LauNC
Garrett-EngeleP
GrimsonA
SchelterJM
2005 Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 769 773
17. GuS
JinL
ZhangF
SarnowP
KayMA
2009 Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16 144 150
18. LeeI
AjaySS
YookJI
KimHS
HongSH
2009 New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19 1175 1183
19. ChiSW
ZangJB
MeleA
DarnellRB
2009 Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460 479 486
20. OromUA
NielsenFC
LundAH
2008 MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30 460 471
21. JoplingCL
YiM
LancasterAM
LemonSM
SarnowP
2005 Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309 1577 1581
22. EasowG
TelemanAA
CohenSM
2007 Isolation of microRNA targets by miRNP immunopurification. Rna 13 1198 1204
23. KarginovFV
ConacoC
XuanZ
SchmidtBH
ParkerJS
2007 A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104 19291 19296
24. BoudreauHE
BroustasCG
GokhalePC
KumarD
MewaniRR
2007 Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int J Mol Med 19 29 39
25. JungT
CatalgolB
GruneT
2009 The proteasomal system. Mol Aspects Med 30 191 296
26. MiyakeS
SellersWR
SafranM
LiX
ZhaoW
2000 Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 20 8889 8902
27. PaytonM
CoatsS
2002 Cyclin E2, the cycle continues. Int J Biochem Cell Biol 34 315 320
28. AvramisVI
TiwariPN
2006 Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomedicine 1 241 254
29. IaconoKT
BrownAL
GreeneMI
SaouafSJ
2007 CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 83 283 295
30. LadanyiM
LuiMY
AntonescuCR
Krause-BoehmA
MeindlA
2001 The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20 48 57
31. WangY
ZhouX
ZhuH
LiuS
ZhouC
2005 Overexpression of EB1 in human esophageal squamous cell carcinoma (ESCC) may promote cellular growth by activating beta-catenin/TCF pathway. Oncogene 24 6637 6645
32. BrenneckeJ
StarkA
RussellRB
CohenSM
2005 Principles of microRNA-target recognition. PLoS Biol 3 e85
33. DoenchJG
SharpPA
2004 Specificity of microRNA target selection in translational repression. Genes Dev 18 504 511
34. KalejtaRF
ShenkT
2002 Manipulation of the cell cycle by human cytomegalovirus. Front Biosci 7 d295 306
35. JaultFM
JaultJM
RuchtiF
FortunatoEA
ClarkC
1995 Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol 69 6697 6704
36. MazumderS
GongB
AlmasanA
2000 Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 19 2828 2835
37. UglandH
BoquestAC
NaderiS
CollasP
BlomhoffHK
2008 cAMP-mediated induction of cyclin E sensitizes growth-arrested adipose stem cells to DNA damage-induced apoptosis. Mol Biol Cell 19 5082 5092
38. SinclairJ
SissonsP
2006 Latency and reactivation of human cytomegalovirus. J Gen Virol 87 1763 1779
39. Soderberg-NauclerC
FishKN
NelsonJA
1997 Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 91 119 126
40. RueCA
JarvisMA
KnocheAJ
MeyersHL
DeFilippisVR
2004 A cyclooxygenase-2 homologue encoded by rhesus cytomegalovirus is a determinant for endothelial cell tropism. J Virol 78 12529 12536
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression
- Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO
- Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization
- Two Novel Point Mutations in Clinical Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection