NleG Type 3 Effectors from Enterohaemorrhagic Are U-Box E3 Ubiquitin Ligases
NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.
Vyšlo v časopise:
NleG Type 3 Effectors from Enterohaemorrhagic Are U-Box E3 Ubiquitin Ligases. PLoS Pathog 6(6): e32767. doi:10.1371/journal.ppat.1000960
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000960
Souhrn
NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.
Zdroje
1. GalanJE
2009 Common themes in the design and function of bacterial effectors. Cell Host Microbe 5 571 579
2. ParsotC
2009 Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12 110 116
3. BhavsarAP
GuttmanJA
FinlayBB
2007 Manipulation of host-cell pathways by bacterial pathogens. Nature 449 827 834
4. Sal-ManN
Biemans-OldehinkelE
FinlayBB
2009 Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. Structure 17 15 19
5. MounierJ
PopoffMR
EnningaJ
FrameMC
SansonettiPJ
2009 The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5 e1000271
6. Steele-MortimerO
2008 The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11 38 45
7. AltoNM
WeflenAW
RardinMJ
YararD
LazarCS
2007 The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol 178 1265 1278
8. BrodskyIE
MedzhitovR
2009 Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11 521 526
9. NavarroL
AltoNM
DixonJE
2005 Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 8 21 27
10. RytkonenA
HoldenDW
2007 Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1 13 22
11. AngotA
VergunstA
GeninS
PeetersN
2007 Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3 e3
12. SpallekT
RobatzekS
GohreV
2009 How microbes utilize host ubiquitination. Cell Microbiol 11 1425 1434
13. HuibregtseJM
ScheffnerM
BeaudenonS
HowleyPM
1995 A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92 2563 2567
14. SchwarzSE
RosaJL
ScheffnerM
1998 Characterization of human HECT domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 273 12148 12154
15. ScheffnerM
NuberU
HuibregtseJM
1995 Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373 81 83
16. JacksonPK
EldridgeAG
FreedE
FurstenthalL
HsuJY
2000 The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10 429 439
17. CyrDM
HohfeldJ
PattersonC
2002 Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27 368 375
18. AbramovitchRB
MartinGB
2005 AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol Lett 245 1 8
19. JanjusevicR
AbramovitchRB
MartinGB
StebbinsCE
2006 A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311 222 226
20. RosebrockTR
ZengL
BradyJJ
AbramovitchRB
XiaoF
2007 A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448 370 374
21. AngotA
PeetersN
LechnerE
VailleauF
BaudC
2006 Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103 14620 14625
22. DiaoJ
ZhangY
HuibregtseJM
ZhouD
ChenJ
2008 Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 15 65 70
23. RohdeJR
BreitkreutzA
ChenalA
SansonettiPJ
ParsotC
2007 Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1 77 83
24. HaragaA
MillerSI
2006 A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol 8 837 846
25. ZhuY
LiH
HuL
WangJ
ZhouY
2008 Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15 1302 1308
26. SingerAU
RohdeJR
LamR
SkarinaT
KaganO
2008 Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15 1293 1301
27. QuezadaCM
HicksSW
GalanJE
StebbinsCE
2009 A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc Natl Acad Sci U S A 106 4864 4869
28. KaperJB
McDanielTK
JarvisKG
Gomez-DuarteO
1997 Genetics of virulence of enteropathogenic E. coli. Adv Exp Med Biol 412 279 287
29. DeanP
MarescaM
KennyB
2005 EPEC's weapons of mass subversion. Curr Opin Microbiol 8 28 34
30. TobeT
BeatsonSA
TaniguchiH
AbeH
BaileyCM
2006 An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103 14941 14946
31. LiM
RosenshineI
YuHB
NadlerC
MillsE
2006 Identification and characterization of NleI, a new non-LEE-encoded effector of enteropathogenic Escherichia coli (EPEC). Microbes Infect 8 2890 2898
32. HolmL
KaariainenS
RosenstromP
SchenkelA
2008 Searching protein structure databases with DaliLite v.3. Bioinformatics 24 2780 2781
33. CapiliAD
EdghillEL
WuK
BordenKL
2004 Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J Mol Biol 340 1117 1129
34. LorickKL
JensenJP
FangS
OngAM
HatakeyamaS
1999 RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96 11364 11369
35. XuZ
KohliE
DevlinKI
BoldM
NixJC
2008 Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct Biol 8 26
36. DeshaiesRJ
JoazeiroCA
2009 RING domain E3 ubiquitin ligases. Annu Rev Biochem 78 399 434
37. WinklerGS
AlbertTK
DominguezC
LegtenbergYI
BoelensR
2004 An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J Mol Biol 337 157 165
38. ShembadeN
MaA
HarhajEW
Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327 1135 1139
39. ZhangRG
SkarinaT
KatzJE
BeasleyS
KhachatryanA
2001 Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure 9 1095 1106
40. StudierFW
2005 Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41 207 234
41. GutmanasA
JarvollP
OrekhovVY
BilleterM
2002 Three-way decomposition of a complete 3D 15N-NOESY-HSQC. J Biomol NMR 24 191 201
42. LuanT
JaravineV
YeeA
ArrowsmithCH
OrekhovVY
2005 Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33 1 14
43. DelaglioF
GrzesiekS
VuisterGW
ZhuG
PfeiferJ
1995 NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6 277 293
44. BaxA
VuisterGW
GrzesiekS
DelaglioF
WangAC
1994 Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239 79 105
45. KayLE
1997 NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 75 1 15
46. NeriD
SzyperskiT
OttingG
SennH
WüthrichK
1989 Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28 7510 7516
47. LescopE
SchandaP
BrutscherB
2007 A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187 163 169
48. CornilescuG
MarquardtJL
OM
BaxA
1998 Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120 6836 6837
49. GuntertP
2004 Automated NMR structure calculation with CYANA. Methods Mol Biol 278 353 378
50. CornilescuG
DelaglioF
BaxA
1999 Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13 289 302
51. HuangYJ
PowersR
MontelioneGT
2005 Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127 1665 1674
52. BrungerAT
AdamsPD
CloreGM
DeLanoWL
GrosP
1998 Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54 905 921
53. LingeJP
WilliamsMA
SpronkCA
BonvinAM
NilgesM
2003 Refinement of protein structures in explicit solvent. Proteins 50 496 506
54. LaskowskiRA
RullmannnJA
MacArthurMW
KapteinR
ThorntonJM
1996 AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8 477 486
55. LovellSC
DavisIW
ArendallWB3rd
de BakkerPI
WordJM
2003 Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50 437 450
56. BhattacharyaA
TejeroR
MontelioneGT
2007 Evaluating protein structures determined by structural genomics consortia. Proteins 66 778 795
57. KoradiR
BilleterM
WuthrichK
1996 MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14 51 55, 29-32
58. ShenY
LangeO
DelaglioF
RossiP
AraminiJM
2008 Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105 4685 4690
59. ChennaR
SugawaraH
KoikeT
LopezR
GibsonTJ
2003 Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31 3497 3500
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression
- Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO
- Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization
- Two Novel Point Mutations in Clinical Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection