#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

NleG Type 3 Effectors from Enterohaemorrhagic Are U-Box E3 Ubiquitin Ligases


NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.


Vyšlo v časopise: NleG Type 3 Effectors from Enterohaemorrhagic Are U-Box E3 Ubiquitin Ligases. PLoS Pathog 6(6): e32767. doi:10.1371/journal.ppat.1000960
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000960

Souhrn

NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.


Zdroje

1. GalanJE

2009 Common themes in the design and function of bacterial effectors. Cell Host Microbe 5 571 579

2. ParsotC

2009 Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 12 110 116

3. BhavsarAP

GuttmanJA

FinlayBB

2007 Manipulation of host-cell pathways by bacterial pathogens. Nature 449 827 834

4. Sal-ManN

Biemans-OldehinkelE

FinlayBB

2009 Structural microengineers: pathogenic Escherichia coli redesigns the actin cytoskeleton in host cells. Structure 17 15 19

5. MounierJ

PopoffMR

EnningaJ

FrameMC

SansonettiPJ

2009 The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5 e1000271

6. Steele-MortimerO

2008 The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11 38 45

7. AltoNM

WeflenAW

RardinMJ

YararD

LazarCS

2007 The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol 178 1265 1278

8. BrodskyIE

MedzhitovR

2009 Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11 521 526

9. NavarroL

AltoNM

DixonJE

2005 Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 8 21 27

10. RytkonenA

HoldenDW

2007 Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1 13 22

11. AngotA

VergunstA

GeninS

PeetersN

2007 Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3 e3

12. SpallekT

RobatzekS

GohreV

2009 How microbes utilize host ubiquitination. Cell Microbiol 11 1425 1434

13. HuibregtseJM

ScheffnerM

BeaudenonS

HowleyPM

1995 A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92 2563 2567

14. SchwarzSE

RosaJL

ScheffnerM

1998 Characterization of human HECT domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem 273 12148 12154

15. ScheffnerM

NuberU

HuibregtseJM

1995 Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373 81 83

16. JacksonPK

EldridgeAG

FreedE

FurstenthalL

HsuJY

2000 The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 10 429 439

17. CyrDM

HohfeldJ

PattersonC

2002 Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27 368 375

18. AbramovitchRB

MartinGB

2005 AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol Lett 245 1 8

19. JanjusevicR

AbramovitchRB

MartinGB

StebbinsCE

2006 A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311 222 226

20. RosebrockTR

ZengL

BradyJJ

AbramovitchRB

XiaoF

2007 A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448 370 374

21. AngotA

PeetersN

LechnerE

VailleauF

BaudC

2006 Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103 14620 14625

22. DiaoJ

ZhangY

HuibregtseJM

ZhouD

ChenJ

2008 Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 15 65 70

23. RohdeJR

BreitkreutzA

ChenalA

SansonettiPJ

ParsotC

2007 Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1 77 83

24. HaragaA

MillerSI

2006 A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol 8 837 846

25. ZhuY

LiH

HuL

WangJ

ZhouY

2008 Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15 1302 1308

26. SingerAU

RohdeJR

LamR

SkarinaT

KaganO

2008 Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15 1293 1301

27. QuezadaCM

HicksSW

GalanJE

StebbinsCE

2009 A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc Natl Acad Sci U S A 106 4864 4869

28. KaperJB

McDanielTK

JarvisKG

Gomez-DuarteO

1997 Genetics of virulence of enteropathogenic E. coli. Adv Exp Med Biol 412 279 287

29. DeanP

MarescaM

KennyB

2005 EPEC's weapons of mass subversion. Curr Opin Microbiol 8 28 34

30. TobeT

BeatsonSA

TaniguchiH

AbeH

BaileyCM

2006 An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103 14941 14946

31. LiM

RosenshineI

YuHB

NadlerC

MillsE

2006 Identification and characterization of NleI, a new non-LEE-encoded effector of enteropathogenic Escherichia coli (EPEC). Microbes Infect 8 2890 2898

32. HolmL

KaariainenS

RosenstromP

SchenkelA

2008 Searching protein structure databases with DaliLite v.3. Bioinformatics 24 2780 2781

33. CapiliAD

EdghillEL

WuK

BordenKL

2004 Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J Mol Biol 340 1117 1129

34. LorickKL

JensenJP

FangS

OngAM

HatakeyamaS

1999 RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96 11364 11369

35. XuZ

KohliE

DevlinKI

BoldM

NixJC

2008 Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct Biol 8 26

36. DeshaiesRJ

JoazeiroCA

2009 RING domain E3 ubiquitin ligases. Annu Rev Biochem 78 399 434

37. WinklerGS

AlbertTK

DominguezC

LegtenbergYI

BoelensR

2004 An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J Mol Biol 337 157 165

38. ShembadeN

MaA

HarhajEW

Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327 1135 1139

39. ZhangRG

SkarinaT

KatzJE

BeasleyS

KhachatryanA

2001 Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure 9 1095 1106

40. StudierFW

2005 Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41 207 234

41. GutmanasA

JarvollP

OrekhovVY

BilleterM

2002 Three-way decomposition of a complete 3D 15N-NOESY-HSQC. J Biomol NMR 24 191 201

42. LuanT

JaravineV

YeeA

ArrowsmithCH

OrekhovVY

2005 Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33 1 14

43. DelaglioF

GrzesiekS

VuisterGW

ZhuG

PfeiferJ

1995 NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6 277 293

44. BaxA

VuisterGW

GrzesiekS

DelaglioF

WangAC

1994 Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol 239 79 105

45. KayLE

1997 NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 75 1 15

46. NeriD

SzyperskiT

OttingG

SennH

WüthrichK

1989 Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28 7510 7516

47. LescopE

SchandaP

BrutscherB

2007 A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187 163 169

48. CornilescuG

MarquardtJL

OM

BaxA

1998 Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120 6836 6837

49. GuntertP

2004 Automated NMR structure calculation with CYANA. Methods Mol Biol 278 353 378

50. CornilescuG

DelaglioF

BaxA

1999 Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13 289 302

51. HuangYJ

PowersR

MontelioneGT

2005 Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127 1665 1674

52. BrungerAT

AdamsPD

CloreGM

DeLanoWL

GrosP

1998 Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54 905 921

53. LingeJP

WilliamsMA

SpronkCA

BonvinAM

NilgesM

2003 Refinement of protein structures in explicit solvent. Proteins 50 496 506

54. LaskowskiRA

RullmannnJA

MacArthurMW

KapteinR

ThorntonJM

1996 AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8 477 486

55. LovellSC

DavisIW

ArendallWB3rd

de BakkerPI

WordJM

2003 Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50 437 450

56. BhattacharyaA

TejeroR

MontelioneGT

2007 Evaluating protein structures determined by structural genomics consortia. Proteins 66 778 795

57. KoradiR

BilleterM

WuthrichK

1996 MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14 51 55, 29-32

58. ShenY

LangeO

DelaglioF

RossiP

AraminiJM

2008 Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105 4685 4690

59. ChennaR

SugawaraH

KoikeT

LopezR

GibsonTJ

2003 Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31 3497 3500

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#