Biofilm Development on by Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.
Vyšlo v časopise:
Biofilm Development on by Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion. PLoS Pathog 7(1): e32767. doi:10.1371/journal.ppat.1001250
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001250
Souhrn
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.
Zdroje
1. NavarroL
AltoNM
DixonJE
2005 Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr Opin Microbiol 8 21 27
2. CornelisGR
2002 Yersinia type III secretion: send in the effectors. J Cell Biol 158 401 408
3. GalanJE
Wolf-WatzH
2006 Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 567 573
4. RamamurthiKS
SchneewindO
2002 Type III protein secretion in Yersinia species. Annu Rev Cell Dev Biol 18 107 133
5. DarbyC
HsuJW
GhoriN
FalkowS
2002 Caenorhabditis elegans - Plague bacteria biofilm blocks food intake. Nature 417 243 244
6. JoshuaGWP
KarlyshevAV
SmithMP
IsherwoodKE
TitballRW
2003 A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology-Sgm 149 3221 3229
7. HinnebuschBJ
PerryRD
SchwanTG
1996 Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273 367 370
8. StoodleyP
SauerK
DaviesDG
CostertonJW
2002 Biofilms as complex differentiated communities. Annu Rev Microbiol 56 187 209
9. JarrettCO
DeakE
IsherwoodKE
OystonPC
FischerER
2004 Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190 783 792
10. PlattHM
1994 Forward in Phylogenetic systematics of free-living nematodes.
LorenzenS
London The Ray Society i ii
11. MatzC
KjellebergS
2005 Off the hook - how bacteria survive protozoan grazing. Trends Microbiol 13 302 307
12. TanL
DarbyC
2004 A movable surface: Formation of Yersinia sp biofilms on motile Caenorhabditis elegans. J Bacteriol 186 5087 5092
13. SalmondGPC
BycroftBW
StewartGSAB
WilliamsP
1995 The bacterial enigma-cracking the code of cell-cell communication. Mol Microbiol 16 615 624
14. WilliamsP
CámaraM
HardmanA
SwiftS
MiltonD
2000 Quorum sensing and the population-dependent control of virulence. Philos T Roy Soc B 355 667 680
15. SwiftS
DownieJA
WhiteheadNA
BarnardAML
SalmondGPC
WilliamsP
2001 Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Phys 45 199 270
16. CámaraM
WilliamsP
HardmanA
2002 Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2 667 676
17. WilliamsP
WinzerK
ChanWC
CámaraM
2007 Look who's talking: communication and quorum sensing in the bacterial world. Philos T Roy Soc B 362 1119 1134
18. AtkinsonS
ThroupJP
StewartGSAB
WilliamsP
1999 A hierarchical quorum sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33 1267 1277
19. AtkinsonS
ChangCY
PatrickHL
BuckleyCMF
WangY
2008 Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 69 137 151
20. AtkinsonS
ChangCY
SockettRE
CámaraM
WilliamsP
2006 Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188 1451 1461
21. KirwanJP
GouldTA
SchweizerHP
BeardenSW
MurphyRC
2006 Quorum-sensing signal synthesis by the Yersinia pestis acyl homoserine lactone synthase YspI. J Bacteriol 188 784 788
22. SwiftS
IsherwoodKE
AtkinsonS
OystonP
StewartGSAB
1999 Quorum sensing in Aeromonas and Yersinia.
EnglandR
HobbsG
BaintonNJ
RobertsDM
Microbial Signalling and Communication Cambridge, UK Cambridge University Press 85 104
23. IsherwoodEK
2001 Quorum sensing in Yersinia pestis. PhD thesis The University of Nottingham
24. YoungGM
2004 Flagella:Organelles for motility and protein secretion.
CarnielE
HinnebuschBJ
Yersinia molecular and cellular biology Wymondham Horizon bioscience 243 256
25. CharltonTS
de NysR
NettingA
KumarN
HentzerM
2000 A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2 530 541
26. LynchMJ
SwiftS
KirkeDF
KeevilCW
DoddCER
2002 The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4 18 28
27. AtkinsonS
CámaraM
WilliamsP
2007 N-Acylhomoserine lactones, quorum sensing and biofilm development in Gram-negative bacteria.
KjellbergS
GivskovM
The biofilm mode of life. Mechanisms and adaptations Wymondham Horizon bioscience 95 122
28. BjarnsholtT
JensenPO
BurmolleM
HentzerM
HaagensenJAJ
2005 Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology-Sgm 151 373 383
29. JensenPO
BjarnsholtT
PhippsR
RasmussenTB
CalumH
2007 Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology-Sgm 153 1329 1338
30. Allesen-HolmM
BarkenKB
YangL
KlausenM
WebbJS
2006 A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59 1114 1128
31. McCleanKH
WinsonMK
FishL
TaylorA
ChhabraSR
1997 Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology-Uk 143 3703 3711
32. AndersenJB
HeydornA
HentzerM
EberlL
GeisenbergerO
2001 gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67 575 585
33. RocheDM
ByersJT
SmithDS
GlansdorpFG
SpringDR
2004 Communications blackout? Do N-acylhomoserine lactone-degrading enzymes have any role in quorum sensing? Microbiology-Sgm 150 2023 2028
34. YoungGM
SchmielDH
MillerVL
1999 A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96 6456 6461
35. Saijo-HamanoY
ImadaK
MinaminoT
KiharaM
ShimadaM
2010 Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export. Mol Microbiol 76 260 268
36. Silva-HerzogE
FerracciF
JacksonMW
JosephSS
PlanoGV
2008 Membrane localization and topology of the Yersinia pestis YscJ lipoprotein. Microbiology-Sgm 154 593 607
37. MarenneMN
MotaLJ
CornelisGR
2004 The pYV plasmid and the Ysc-Yop Type III secretion system.
CarnielE
HinnebuschBJ
Yersinia molecular and cellular biology Wymondham Horizon Bioscience 319 348
38. O'TooleG
KaplanHB
KolterR
2000 Biofilm formation as microbial development. Annu Rev Microbiol 54 49 79
39. KjellebergS
MolinS
2002 Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5 254 258
40. SauerK
CamperAK
EhrlichGD
CostertonJW
DaviesDG
2002 Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184 1140 1154
41. KlausenM
Aes-JorgensenA
MolinS
Tolker-NielsenT
2003 Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50 61 68
42. WebbJS
ThompsonLS
JamesS
CharltonT
Tolker-NielsenT
2003 Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185 4585 4592
43. TanL
DarbyC
2006 Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61 861 870
44. SizemoreRK
CaldwellJJ
KendrickAS
1990 Alternate Gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56 2245 2247
45. BobrovAG
KirillinaO
FormanS
MackD
PerryRD
2008 Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environmental Microbiology 10 1419 1432
46. DraceK
DarbyC
2008 The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 74 4509 4515
47. SunYC
HinnebuschBJ
DarbyC
2008 Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105 8097 8101
48. SunYC
KoumoutsiA
DarbyC
2009 The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 290 85 90
49. KirillinaO
FetherstonJD
BobrovAG
AbneyJ
PerryRD
2004 HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54 75 88
50. SimmR
FetherstonJD
KaderA
RomlingU
PerryRD
2005 Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187 6816 6823
51. BobrovAG
KirillinaO
PerryRD
2007 Regulation of biofilm formation in Yersinia pestis. Adv Exp Med Biol 603 201 210
52. JacobiCA
BachA
EberlL
SteidleA
HeesemannJ
2003 Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8. Infect Immun 71 6624 6626
53. PrattLA
KolterR
1998 Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 285 293
54. O'TooleGA
KolterR
1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304
55. HossainMM
TsuyumuS
2006 Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora. J Gen Plant Pathol 72 34 39
56. KimTJ
YoungBM
YoungGM
2008 Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74 5466 5474
57. Gomez-GomezL
BollerT
2002 Flagellin perception: a paradigm for innate immunity. Trends in Plant Sci 7 251 256
58. BlevesS
MarenneMN
DetryG
CornelisGR
2002 Up-regulation of the Yersinia enterocolitica yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol 184 3214 3223
59. T
WattiauP
BrasseurR
RuysschaertJM
CornelisG
1990 Secretion of Yop Proteins by Yersiniae. Infect Immun 58 2840 2849
60. BrubakerRR
SurgallaMJ
1964 Effect of Ca2+ and Mg2+ on lysis growth and production of virulence antigens. J Infect Dis 114 13 25
61. BolinI
Wolf-WatzH
1984 Molecular cloning of the temperature inducible outer membrane protein-1 of Yersinia pseudotuberculosis. Infect Immun 43 72 78
62. BolinI
PortnoyDA
WatzHW
1985 Expression of the Temperature inducible outer membrane proteins of Yersiniae. Infect Immun 48 234 240
63. ForsbergA
ViitanenAM
SkurnikM
Wolf-WatzH
1991 The surface located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 5 977 986
64. DraceK
McLaughlinS
DarbyC
2009 Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. Plos One 4 e6741
65. DarbyC
ChakrabortiA
PolitzSM
DanielsCC
TanL
2007 Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 176 221 230
66. QaziSNA
ReesCED
MellitsKH
HillPJ
2001 Development of gfp vectors for expression in Listeria monocytogenes and other low G+C Gram-positive bacteria. Microb Ecol 41 301 309
67. LennoxES
1955 Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1 190 206
68. YatesEA
PhilippB
BuckleyC
AtkinsonS
ChhabraSR
2002 N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70 5635 5646
69. RileyG
TomaS
1989 Detection of pathogenic Yersinia enterocolitica by using congo red-magnesium oxalate agar medium. J Clin Microbiol 27 213 214
70. LewisJA
FlemingTJ
1995 Caenorhabditis elegans: Modern biological analysis of an organism. New York Academic Press 3 39
71. TarrSAJ
1972 The assesment of disease incidence and crop loss. London The Macmillan Press 430 454 In: Principles of plant pathology.
72. VilainS
PretoriusJM
TheronJ
BrozelVS
2009 DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75 2861 2868
73. BartolomeB
JubeteY
MartinezE
DelacruzF
1991 Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102 75 78
74. BrennerS
1974 Genetics of Caenorhabditis elegans. Genetics 77 71 94
75. DerbiseA
LesicB
DacheuxD
GhigoJM
CarnielE
2003 A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38 113 116
76. ChainPSG
CarnielE
LarimerFW
LamerdinJ
StoutlandPO
2004 Insights into the evolution of Yersinia pestis through whole genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101 13826 13831
77. YanischperronC
VieiraJ
MessingJ
1985 Improved M13 phage cloning vectors and host strains - nucleotide-sequences of the M13, Mp18 and pUC19 vectors. Gene 33 103 119
78. StewartGSAB
LubinskyminkS
JacksonCG
CasselA
KuhnJ
1986 pHG165-A pBR322 Copy Number Derivative of pUC8 for Cloning and Expression. Plasmid 15 172 181
79. SockettRE
1998 Characterising Flagella and Motile Behaviour.
WilliamsP
SalmondG
KetleyJM
Methods in microbiology: methods for studying pathogenic bacteria London Academic Press 227 237
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 1
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Dual-Use Research and Technological Diffusion: Reconsidering the Bioterrorism Threat Spectrum
- Pathogenesis of the 1918 Pandemic Influenza Virus
- Critical Role of IRF-5 in the Development of T helper 1 responses to infection
- A Cardinal Role for Cathepsin D in Co-Ordinating the Host-Mediated Apoptosis of Macrophages and Killing of Pneumococci