#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of


Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.


Vyšlo v časopise: The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of. PLoS Pathog 7(1): e32767. doi:10.1371/journal.ppat.1001264
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001264

Souhrn

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.


Zdroje

1. O'TooleGA

2003 To build a biofilm. J Bacteriol 185 2687 2689

2. ParsekMR

SinghPK

2003 Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57 677 701

3. StoodleyP

SauerK

DaviesDG

CostertonJW

2002 Biofilms as complex differentiated communities. Annu Rev Microbiol 56 187 209

4. DrenkardE

2003 Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5 1213 1219

5. MahTF

O'TooleGA

2001 Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9 34 39

6. NickelJC

RuseskaI

WrightJB

CostertonJW

1985 Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27 619 624

7. CostertonJW

StewartPS

GreenbergEP

1999 Bacterial biofilms: a common cause of persistent infections. Science 284 1318 1322

8. SinghPK

SchaeferAL

ParsekMR

MoningerTO

WelshMJ

2000 Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407 762 764

9. WagnerVE

IglewskiBH

2008 Pseudomonas aeruginosa biofilms in CF Infection. Clin Rev Allergy Immunol 35 124 134

10. OphirT

GutnickDL

1994 A Role for Exopolysaccharides in the Protection of Microorganisms from Desiccation. Appl Environ Microbiol 60 740 745

11. RyderC

ByrdM

WozniakDJ

2007 Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10 644 648

12. StarkeyM

GrayK

ChangS

ParsekMR

2004

O'TooleGA

A Sticky business: The extracellular polymeric substance matrix of bacterial biofilms Washington DC ASM press

13. VarkiA

CummingsR

EskoJ

HudsonF

GeraldH

1999 Essentials in Glycobiology New York Cold Springs Harbor Laboratory Press

14. StewartPS

CostertonJW

2001 Antibiotic resistance of bacteria in biofilms. Lancet 358 135 138

15. HentzerM

TeitzelGM

BalzerGJ

HeydornA

MolinS

2001 Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183 5395 5401

16. HarrisonJJ

CeriH

StremickCA

TurnerRJ

2004 Biofilm susceptibility to metal toxicity. Environ Microbiol 6 1220 1227

17. FriedmanL

KolterR

2004 Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51 675 690

18. VasseurP

Vallet-GelyI

SosciaC

GeninS

FillouxA

2005 The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151 985 997

19. LeeDG

UrbachJM

WuG

LiberatiNT

FeinbaumRL

2006 Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7 R90

20. HickmanJW

TifreaDF

HarwoodCS

2005 A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102 14422 14427

21. LeeVT

MatewishJM

KesslerJL

HyodoM

HayakawaY

2007 A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65 1474 1484

22. ZogajX

NimtzM

RohdeM

BokranzW

RomlingU

2001 The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39 1452 1463

23. StarkeyM

HickmanJH

MaL

ZhangN

De LongS

2009 Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. J Bacteriol 191 3492 3503

24. FriedmanL

KolterR

2004 Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186 4457 4465

25. JacksonKD

StarkeyM

KremerS

ParsekMR

WozniakDJ

2004 Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186 4466 4475

26. MaL

JacksonKD

LandryRM

ParsekMR

WozniakDJ

2006 Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188 8213 8221

27. HeydornA

NielsenAT

HentzerM

SternbergC

GivskovM

2000 Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146 (Pt 10) 2395 2407

28. SinghPK

ParsekMR

GreenbergEP

WelshMJ

2002 A component of innate immunity prevents bacterial biofilm development. Nature 417 552 555

29. AshkinA

DziedzicJM

1989 Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci U S A 86 7914 7918

30. MahTF

PittsB

PellockB

WalkerGC

StewartPS

2003 A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426 306 310

31. SadovskayaI

VinogradovE

LiJ

HachaniA

KowalskaK

2010 High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated β-(1→3)-glucans, which bind aminoglycosides. Glycobiology 20 895 904

32. KirisitsMJ

ProstL

StarkeyM

ParsekMR

2005 Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71 4809 4821

33. WaltersMC3rd

RoeF

BugnicourtA

FranklinMJ

StewartPS

2003 Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47 317 323

34. PesciEC

MilbankJB

PearsonJP

McKnightS

KendeAS

1999 Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96 11229 11234

35. MerrittJH

BrothersKM

KuchmaSL

O'TooleGA

2007 SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189 8154 8164

36. DanesePN

PrattLA

KolterR

2000 Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182 3593 3596

37. ThormannKM

DuttlerS

SavilleR

HyodoM

ShuklaS

2006 Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilm by cyclic di-GMP. J Bacteriol 188 2681 2691

38. HollowayBW

1955 Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13 572 581

39. RahmeLG

StevensEJ

WolfortSF

ShaoJ

TompkinsRG

1995 Common virulence factors for bacterial pathogenicity in plants and animals. Science 268 1899 1902

40. KanekoY

ThoendelM

OlakanmiO

BritiganBE

SinghPK

2007 The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117 877 888

41. HoangTT

Karkhoff-SchweizerRR

KutchmaAJ

SchweizerHP

1998 A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212 77 86

42. DaviesDG

ParsekMR

PearsonJP

IglewskiBH

CostertonJW

1998 The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280 295 298

43. KochB

JensenLE

NybroeO

2001 A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45 187 195

44. MerrittJH

KadouriDE

O'TooleGA

2005 Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1 Unit 1B.1

45. ShroutJD

ChoppDL

JustCL

HentzerM

GivskovM

2006 The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62 1264 1277

46. SchaeferAL

GreenbergEP

ParsekMR

2001 Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. Methods Enzymol 336 41 47

47. E.F. FritschJS

T. Maniatis

1989 Molecular Cloning Woodbury (New York) Cold Spring Harbor Laboratory Press

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#