A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.
Vyšlo v časopise:
A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes. PLoS Pathog 7(8): e32767. doi:10.1371/journal.ppat.1002192
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002192
Souhrn
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.
Zdroje
1. BasslerBLLosickR 2006 Bacterially speaking. Cell 125 237 246
2. SmithEEBuckleyDGWuZSaenphimmachakCHoffmanLR 2006 Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103 8487 8492
3. GoodmanALKulasekaraBRietschABoydDSmithRS 2004 A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7 745 754
4. HassettDJKorfhagenTRIrvinRTSchurrMJSauerK 2010 Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 14 117 130
5. HausslerS 2010 Multicellular signalling and growth of Pseudomonas aeruginosa. Int J Med Microbiol 300 544 548
6. MougousJDCuffMERaunserSShenAZhouM 2006 A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312 1526 1530
7. SchobertMJahnD 2010 Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int J Med Microbiol 300 549 556
8. WilliamsPCamaraM 2009 Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12 182 191
9. ShinerEKRumbaughKPWilliamsSC 2005 Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29 935 947
10. CaoHKrishnanGGoumnerovBTsongalisJTompkinsR 2001 A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98 14613 14618
11. RahmeLGStevensEJWolfortSFShaoJTompkinsRG 1995 Common virulence factors for bacterial pathogenicity in plants and animals. Science 268 1899 1902
12. GallagherLAMcKnightSLKuznetsovaMSPesciECManoilC 2002 Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184 6472 6480
13. OglesbyAGFarrow3rdJMLeeJHTomarasAPGreenbergEP 2008 The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283 15558 15567
14. XiaoGDezielEHeJLepineFLesicB 2006 MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62 1689 1699
15. DezielELepineFMilotSHeJMindrinosMN 2004 Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101 1339 1344
16. DezielEGopalanSTampakakiAPLepineFPadfieldKE 2005 The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55 998 1014
17. WadeDSCalfeeMWRochaERLingEAEngstromE 2005 Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187 4372 4380
18. CoxCDParkerJ 1979 Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J Clin Microbiol 9 479 484
19. LepineFMilotSDezielEHeJRahmeLG 2004 Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15 862 869
20. LepineFDekimpeVLesicBMilotSLesimpleA 2007 PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis. Biol Chem 388 839 845
21. LabowsJNMcGinleyKJWebsterGFLeydenJJ 1980 Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J Clin Microbiol 12 521 526
22. Scott-ThomasAJSyhreMPattemorePKEptonMLaingR 2010 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med 10 56
23. VialLLepineFMilotSGroleauMCDekimpeV 2008 Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190 5339 5352
24. ThattaiMvan OudenaardenA 2004 Stochastic gene expression in fluctuating environments. Genetics 167 523 530
25. LesicBLepineFDezielEZhangJZhangQ 2007 Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3 1229 1239
26. Farrow3rdJMSundZMEllisonMLWadeDSColemanJP 2008 PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190 7043 7051
27. HazanRHeJXiaoGDekimpeVApidianakisY 2010 Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence. PLoS Pathog 6 e1000810
28. ApidianakisYPitsouliCPerrimonNRahmeL 2009 Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A
29. ApidianakisYRahmeLG 2009 Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4 1285 1294
30. LauGWGoumnerovBCWalendziewiczCLHewitsonJXiaoW 2003 The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71 4059 4066
31. FerrandonDImlerJLHetruCHoffmannJA 2007 The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7 862 874
32. StevensEJRyanCMFriedbergJSBarnhillRLYarmushML 1994 A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil 15 232 235
33. D'ArgenioDAWuMHoffmanLRKulasekaraHDDezielE 2007 Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64 512 533
34. NguyenDSinghPK 2006 Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A 103 8305 8306
35. MatheeKNarasimhanGValdesCQiuXMatewishJM 2008 Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105 3100 3105
36. JainMRamirezDSeshadriRCullinaJFPowersCA 2004 Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42 5229 5237
37. OliverACantonRCampoPBaqueroFBlazquezJ 2000 High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288 1251 1254
38. MaciaMDBlanquerDTogoresBSauledaJPerezJL 2005 Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49 3382 3386
39. KohlerTEppSFCurtyLKPechereJC 1999 Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181 6300 6305
40. JyotJDasguptaNRamphalR 2002 FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184 5251 5260
41. TulpMBohlinL 2005 Rediscovery of known natural compounds: nuisance or goldmine? Bioorg Med Chem 13 5274 5282
42. DiggleSPLumjiaktasePDipilatoFWinzerKKunakornM 2006 Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13 701 710
43. SioCFOttenLGCoolRHDiggleSPBraunPG 2006 Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74 1673 1682
44. ChuganiSAWhiteleyMLeeKMD'ArgenioDManoilC 2001 QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98 2752 2757
45. de KievitTSeedPCNezezonJPassadorLIglewskiBH 1999 RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J Bacteriol 181 2175 2184
46. SchulzSDickschatJS 2007 Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24 814 842
47. BalabanNQMerrinJChaitRKowalikLLeiblerS 2004 Bacterial persistence as a phenotypic switch. Science 305 1622 1625
48. HoffmanLRRichardsonARHoustonLSKulasekaraHDMartens-HabbenaW 2010 Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 6 e1000712
49. LepineFDezielEMilotSRahmeLG 2003 A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622 36 41
50. YangLBarkenKBSkindersoeMEChristensenABGivskovM 2007 Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153 1318 1328
51. XiaoGHeJRahmeLG 2006 Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152 1679 1686
52. LesicBRahmeLG 2008 Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9 20
53. HeJBaldiniRLDezielESaucierMZhangQ 2004 The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 101 2530 2535
54. DerbiseALesicBDacheuxDGhigoJMCarnielE 2003 A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38 113 116
55. KurachiM 1958 Studies of the biosynthesis of pyocyanine. II. Isolation and determination of pyocyanine. Bull Inst Chem Res 36 174 187
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 8
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus
- Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development
- Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species
- Recruitment of the Major Vault Protein by InlK: A Strategy to Avoid Autophagy