Provides Insights into the Evolution of the Salmonellae
The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.
Vyšlo v časopise:
Provides Insights into the Evolution of the Salmonellae. PLoS Pathog 7(8): e32767. doi:10.1371/journal.ppat.1002191
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002191
Souhrn
The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.
Zdroje
1. DoolittleRFFengDFTsangSChoGLittleE 1996 Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271 470 477
2. BrennerFWVillarRGAnguloFJTauxeRSwaminathanB 2000 Salmonella nomenclature. J Clin Microbiol 38 2465 2467
3. CrosaJHBrennerDJEwingWHFalkowS 1973 Molecular relationships among the Salmonelleae. J Bacteriol 115 307 315
4. KauffmannF 1966 [On the history of salmonella research]. Zentralbl Bakteriol Orig 201 44 48
5. Le MinorLVeronMPopoffM 1982 [The taxonomy of Salmonella]. Ann Microbiol (Paris) 133 223 243
6. Le MinorLVeronMPopoffM 1982 [A proposal for Salmonella nomenclature]. Ann Microbiol (Paris) 133 245 254
7. NastasiAMamminaCVillafrateMRMassentiMFScarlataG 1988 Multiple typing of strains of Salmonella enterica subsp. bongori ser. 48:Z35:- isolated in southern Italy. Ann Inst Pasteur Microbiol 139 605 612
8. GiammancoGMPignatoSMamminaCGrimontFGrimontPA 2002 Persistent endemicity of Salmonella bongori 48:z(35):--in Southern Italy: molecular characterization of human, animal, and environmental isolates. J Clin Microbiol 40 3502 3505
9. McClellandMFloreaLSandersonKCliftonSWParkhillJ 2000 Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. Nucleic Acids Res 28 4974 4986
10. ParkhillJDouganGJamesKDThomsonNRPickardD 2001 Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413 848 852
11. McClellandMSandersonKESpiethJCliftonSWLatreilleP 2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856
12. SchmidtHHenselM 2004 Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17 14 56
13. GalanJE 1996 Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20 263 271
14. HenselMSheaJEBaumlerAJGleesonCBlattnerF 1997 Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 179 1105 1111
15. HenselMSheaJEWatermanSRMundyRNikolausT 1998 Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30 163 174
16. CirilloDMValdiviaRHMonackDMFalkowS 1998 Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30 175 188
17. HelaineSThompsonJAWatsonKGLiuMBoyleC 2010 Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107 3746 3751
18. OchmanHGroismanEA 1996 Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64 5410 5412
19. KidgellCReichardUWainJLinzBTorpdahlM 2002 Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2 39 45
20. BoydEFWangFSWhittamTSSelanderRK 1996 Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62 804 808
21. CoranderJTangJ 2007 Bayesian analysis of population structure based on linked molecular information. Math Biosci 205 19 31
22. CoranderJMarttinenPSirenJTangJ 2008 Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9 539
23. SharpPMEmeryLRZengK 2010 Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci 365 1203 1212
24. CookeFJWainJFookesMIvensAThomsonN 2007 Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. J Clin Microbiol 45 2590 2598
25. Blanc-PotardABSolomonFKayserJGroismanEA 1999 The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181 998 1004
26. KnodlerLACelliJHardtWDVallanceBAYipC 2002 Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol Microbiol 43 1089 1103
27. HenselMNikolausTEgelseerC 1999 Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol 31 489 498
28. TsolisRMAdamsLGFichtTABaumlerAJ 1999 Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun 67 4879 4885
29. Collier-HyamsLSZengHSunJTomlinsonADBaoZQ 2002 Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol 169 2846 2850
30. MiroldSRabschWRohdeMStenderSTschapeH 1999 Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 96 9845 9850
31. EhrbarKHardtWD 2005 Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 5 1 9
32. ShahDHLeeMJParkJHLeeJHEoSK 2005 Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151 3957 3968
33. VernikosGSParkhillJ 2006 Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22 2196 2203
34. PorwollikSMcClellandM 2007 Determination of the gene content of Salmonella genomes by microarray analysis. Methods Mol Biol 394 89 103
35. PorwollikSBoydEFChoyCChengPFloreaL 2004 Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 186 5883 5898
36. KingsleyRAHumphriesADWeeningEHDe ZoeteMRWinterS 2003 Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun 71 629 640
37. BlondelCJJimenezJCContrerasISantiviagoCA 2009 Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 10 354
38. FolkessonALofdahlSNormarkS 2002 The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153 537 545
39. PettyNKBulginRCrepinVFCerdeno-TarragaAMSchroederGN 2009 The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192 525 538
40. LesicBStarkeyMHeJHazanRRahmeLG 2009 Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155 2845 2855
41. ZhengJLeungKY 2007 Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66 1192 1206
42. MougousJDCuffMERaunserSShenAZhouM 2006 A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312 1526 1530
43. IguchiAThomsonNROguraYSaundersDOokaT 2009 Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191 347 354
44. FrankelGPhillipsAD 2008 Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cell Microbiol 10 549 556
45. LiMRosenshineIYuHBNadlerCMillsE 2006 Identification and characterization of NleI, a new non-LEE-encoded effector of enteropathogenic Escherichia coli (EPEC). Microbes Infect 8 2890 2898
46. MarchesOCovarelliVDahanSCougouleCBhattaP 2008 EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell Microbiol 10 1104 1115
47. ThomsonNBakerSPickardDFookesMAnjumM 2004 The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 339 279 300
48. Garcia-AnguloVADengWThomasNAFinlayBBPuenteJL 2008 Regulation of expression and secretion of NleH, a new non-locus of enterocyte effacement-encoded effector in Citrobacter rodentium. J Bacteriol 190 2388 2399
49. HigashideWZhouD 2006 The first 45 amino acids of SopA are necessary for InvB binding and SPI-1 secretion. J Bacteriol 188 2411 2420
50. ZhangYHigashideWMMcCormickBAChenJZhouD 2006 The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 62 786 793
51. CharpentierXOswaldE 2004 Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186 5486 5495
52. HemrajaniCBergerCNRobinsonKSMarchesOMousnierA 2010 NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection. Proc Natl Acad Sci U S A 107 3129 3134
53. AbuOunMSuthersPFJonesGICarterBRSaundersMP 2009 Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 284 29480 29488
54. SmithHWParsellZ 1975 Transmissible substrate-utilizing ability in enterobacteria. J Gen Microbiol 87 129 140
55. WaliaSKMadhavanTChughTDSharmaKB 1987 Characterization of self-transmissible plasmids determining lactose fermentation and multiple antibiotic resistance in clinical strains of Klebsiella pneumoniae. Plasmid 17 3 12
56. RothJRLawrenceJGBobikTA 1996 Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50 137 181
57. LawrenceJGRothJR 1996 Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics 142 11 24
58. PorwollikSWongRMMcClellandM 2002 Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci U S A 99 8956 8961
59. PrenticeMBCuccuiJThomsonNParkhillJDeeryE 2003 Cobalamin synthesis in Yersinia enterocolitica 8081. Functional aspects of a putative metabolic island. Adv Exp Med Biol 529 43 46
60. KlumppJFuchsTM 2007 Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153 1207 1220
61. Hansen-WesterIChakravorttyDHenselM 2004 Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli. Infect Immun 72 2879 2888
62. BottM 1997 Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 167 78 88
63. WoehlkeGDimrothP 1994 Anaerobic growth of Salmonella typhimurium on L(+)- and D(-)-tartrate involves an oxaloacetate decarboxylase Na+ pump. Arch Microbiol 162 233 237
64. LutgensMGottschalkG 1980 Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. J Gen Microbiol 119 63 70
65. LawleyTDChanKThompsonLJKimCCGovoniGR 2006 Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2 e11
66. JiangWMetcalfWWLeeKSWannerBL 1995 Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J Bacteriol 177 6411 6421
67. McNaughtMlOwenECHenryKMKonSK 1954 The utilization of non-protein nitrogen in the bovine rumen. VIII. The nutritive value of the proteins of preparations of dried rumen bacteria, rumen protozoa and brewer's yeast for rats. Biochem J 56 151 156
68. KingsleyRAMsefulaCLThomsonNRKariukiSHoltKE 2009 Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19 2279 2287
69. MatiasovicovaJAdamsPBarrowPAHradeckaHMalcovaM 2007 Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch Microbiol 187 415 424
70. FujiwaraSNoguchiT 1995 Degradation of purines: only ureidoglycollate lyase out of four allantoin-degrading enzymes is present in mammals. Biochem J 312 Pt 1 315 318
71. TakadaYNoguchiT 1986 Ureidoglycollate lyase, a new metalloenzyme of peroxisomal urate degradation in marine fish liver. Biochem J 235 391 397
72. McQuistonJRFieldsPITauxeRVLogsdonJMJr 2008 Do Salmonella carry spare tyres? Trends in microbiology 16 142 148
73. WinterSEThiennimitrPWinterMGButlerBPHusebyDL 2010 Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467 426 429
74. HenselM 2000 Salmonella pathogenicity island 2. Mol Microbiol 36 1015 1023
75. EswarappaSMKarnamGNagarajanAGChakrabortySChakravorttyD 2009 lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella. PLoS One 4 e5789
76. KauffmannF 1955 [Differential diagnosis and pathogenicity of Salmonella java and Salmonella paratyphi B.]. Z Hyg Infektionskr 141 546 550
77. ChenYTLiaoTLWuKMLauderdaleTLYanJJ 2009 Genomic diversity of citrate fermentation in Klebsiella pneumoniae. BMC Microbiol 9 168
78. GerlachRGCláudioNRohdeMJäckelDWagnerC 2008 Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol Nov; 10 2364 2376
79. AhmerBMvan ReeuwijkJWatsonPRWallisTSHF 1999 Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31 971 982
80. De KeersmaeckerSCMarchalKVerhoevenTLEngelenKVanderleydenJ 2005 Microarray analysis and motif detection reveal new targets of the Salmonella enterica serovar Typhimurium HilA regulatory protein, including hilA itself. J Bacteriol 187 4381 4391
81. Main-HesterKLColpittsKMThomasGAFangFCLibbySJ 2008 Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 76 1024 1035
82. HarrisSRFeilEJHoldenMTQuailMANickersonEK 2010 Evolution of MRSA during hospital transmission and intercontinental spread. Science 22 469 474
83. CarverTJRutherfordKMBerrimanMRajandreamMABarrellBG 2005 ACT: the Artemis Comparison Tool. Bioinformatics 21 3422 3423
84. BerrimanMRutherfordK 2003 Viewing and annotating sequence data with Artemis. Brief Bioinform 4 124 132
85. StamatakisA 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690
86. DatsenkoKAWannerBL 2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 6640 6645
87. CherepanovPPWackernagelW 1995 Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158 9 14
88. MartinezESchroederGNBergerCNLeeSFRobinsonKS 2010 Binding to Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH. Cell Microbiol 12 1718 1731
89. MiaoEASchererCATsolisRMKingsleyRAAdamsLG 1999 Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol 34 850 864
90. Kujat ChoySLBoyleECGal-MorOGoodeDLValdezY 2004 SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect Immun 72 5115 5125
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 8
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus
- Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development
- Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species
- Recruitment of the Major Vault Protein by InlK: A Strategy to Avoid Autophagy