#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Crystal Structure of Reovirus Attachment Protein σ1 in Complex with Sialylated Oligosaccharides


Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α -helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.


Vyšlo v časopise: Crystal Structure of Reovirus Attachment Protein σ1 in Complex with Sialylated Oligosaccharides. PLoS Pathog 7(8): e32767. doi:10.1371/journal.ppat.1002166
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002166

Souhrn

Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α -helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.


Zdroje

1. WeisWIBrownJHCusackSPaulsonJCSkehelJJ 1988 Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333 426 431

2. StehleTYanYBenjaminTLHarrisonSC 1994 Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369 160 163

3. ZhouLLuoYWuYTsaoJLuoM 2000 Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J Virol 74 1477 1485

4. FryEELeaSMJacksonTNewmanJWEllardFM 1999 The structure and function of a foot-and-mouth disease virus- oligosaccharide receptor complex. EMBO J 18 543 554

5. BurmeisterWPGuilligayDCusackSWadellGArnbergN 2004 Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78 7727 7736

6. KwongPDWyattRRobinsonJSweetRWSodroskiJ 1998 Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing antibody. Nature 393 648 659

7. BewleyMCSpringerKZhangYBFreimuthPFlanaganJM 1999 Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286 1579 1583

8. CarfiAWillisSHWhitbeckJCKrummenacherCCohenGH 2001 Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8 169 179

9. DormitzerPRSunZYWagnerGHarrisonSC 2002 The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21 885 897

10. MullenMMHaanKMLongneckerRJardetzkyTS 2002 Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell 9 375 385

11. YuanPThompsonTBWurzburgBAPatersonRGLambRA 2005 Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 13 803 815

12. SeiradakeELortat-JacobHBilletOKremerEJCusackS 2006 Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the D1 domain of coxsackie and adenovirus receptor. J Biol Chem 281 33704 33716

13. CaoSLouZTanMChenYLiuY 2007 Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81 5949 5957

14. BlanchardHYuXCoulsonBSvon ItzsteinM 2007 Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol 367 1215 1226

15. PerssonBDReiterDMMarttilaMMeiYFCasasnovasJM 2007 Adenovirus type 11 binding alters the conformation of its receptor CD46. Nat Struct Mol Biol 14 164 166

16. NeuUWoellnerKGauglitzGStehleT 2008 Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105 5219 5224

17. NeuUMaginnisMSPalmaASStröhLFeiziT 2010 Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8 309 319

18. NilssonECStormRJBauerJJohanssonSMLookeneA 2011 The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 17 105 109

19. FraserRDFurlongDBTrusBLNibertMLFieldsBN 1990 Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence- based predictions. J Virol 64 2990 3000

20. FurlongDBNibertMLFieldsBN 1988 Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol 62 246 256

21. DrydenKAWangGYeagerMNibertMLCoombsKM 1993 Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122 1023 1041

22. ChappellJDProtaAEDermodyTSStehleT 2002 Crystal structure of reovirus attachment protein sigma 1 reveals evolutionary relationship to adenovirus fiber. EMBO J 21 1 11

23. SchellingPGuglielmiKMKirchnerEPaetzoldBDermodyTS 2007 The reovirus sigma1 aspartic acid sandwich: a trimerization motif poised for conformational change. J Biol Chem 282 11582 11589

24. GentschJRPacittiAF 1985 Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment to murine L cells. J Virol 56 356 364

25. PaulRWChoiAHLeePW 1989 The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172 382 385

26. DermodyTSNibertMLBassel-DubyRFieldsBN 1990 A sigma 1 region important for hemagglutination by serotype 3 reovirus strains. J Virol 64 5173 5176

27. BartonESConnollyJLForrestJCChappellJDDermodyTS 2001 Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 276 2200 2211

28. BartonESForrestJCConnollyJLChappellJDLiuY 2001 Junction adhesion molecule is a receptor for reovirus. Cell 104 441 451

29. Martin-PaduraILostaglioSSchneemannMWilliamsLRomanoM 1998 Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142 117 127

30. Del MaschioADe LuigiAMartin-PaduraIBrockhausMBartfaiT 1999 Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190 1351 1356

31. LiuJHNusratASchnellFJReavesTAWalshS 2000 Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113 2363 2374

32. ProtaAECampbellJASchellingPForrestJCWatsonMJ 2003 Crystal structure of human junctional adhesion molecule 1: Implications for reovirus binding. Proc Natl Acad Sci U S A 100 5366 5371

33. CampbellJASchellingPWetzelJDJohnsonEMForrestJC 2005 Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. J Virol 79 7967 7978

34. MaginnisMSForrestJCKopecky-BrombergSADickesonSKSantoroSA 2006 Beta1 integrin mediates internalization of mammalian reovirus. J Virol 80 2760 2770

35. MaginnisMSMainouBADerdowskiAJohnsonEMZentR 2008 NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J Virol 82 3181 3191

36. KirchnerEGuglielmiKMStraussHMDermodyTSStehleT 2008 Structure of Reovirus Sigma1 in Complex with Its Receptor Junctional Adhesion Molecule-A. PLoS Pathog 4 e1000235

37. GuglielmiKMKirchnerEHolmGHStehleTDermodyTS 2007 Reovirus binding determinants in junctional adhesion molecule-A. J Biol Chem 282 17930 17940

38. ChappellJDDuongJLWrightBWDermodyTS 2000 Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses. J Virol 74 8472 8479

39. van RaaijMJMitrakiALavigneGCusackS 1999 A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401 935 938

40. ChappellJDBartonESSmithTHBaerGSDuongDT 1998 Cleavage susceptibility of reovirus attachment protein sigma 1 during proteolytic disassembly of virions is determined by a sequence polymorphism in the sigma 1 neck. J Virol 72 8205 8213

41. HarburyPBKimPSAlberT 1994 Crystal structure of an isoleucine-zipper trimer. Nature 371 80 83

42. ChappellJDGunnVLWetzelJDBaerGSDermodyTS 1997 Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma 1. J Virol 71 1834 1841

43. KobayashiTAntarAABoehmeKWDanthiPEbyEA 2007 A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1 147 157

44. KobayashiTOomsLSIkizlerMChappellJDDermodyTS 2010 An improved reverse genetics system for mammalian orthoreoviruses. Virology 398 194 200

45. RubinDHWetzelJDWilliamsWVCohenJADworkinC 1992 Binding of type 3 reovirus by a domain of the sigma 1 protein important for hemagglutination leads to infection of murine erythroleukemia cells. J Clin Invest 90 2536 2542

46. WeinerHLDraynaDAverillDRJrFieldsBN 1977 Molecular basis of reovirus virulence: role of the S1 gene. Proc Natl Acad Sci U S A 74 5744 5748

47. WeinerHLPowersMLFieldsBN 1980 Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis 141 609 616

48. TylerKLMcPheeDAFieldsBN 1986 Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 233 770 774

49. EisenMBSabesanSSkehelJJWileyDC 1997 Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X- ray crystallography. Virology 232 19 31

50. StehleTHarrisonSC 1996 Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure, Fold Des 4 183 194

51. StehleTHarrisonSC 1997 High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16 5139 5148

52. FryEETuthillTJHarlosKWalterTSRowlandsDJ 2010 Crystal structure of equine rhinitis A virus in complex with its sialic acid receptor. J Gen Virol 91 1971 1977

53. KabschW 1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 26 795 800

54. NavazaJ 1994 AMoRe: an automated package for molecular replacement. Acta Crystallogr A50 157 163

55. MurshudovGNVaginAADodsonEJ 1997 Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr D53 240 255

56. AdamsPDGrosse-KunstleveRWHungLWIoergerTRMcCoyAJ 2002 PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D58 1948 1954

57. EmsleyPCowtanK 2004 Coot: model building tools for molecular graphics. Acta Crystallogr D60 2126 2132

58. SanfordKKEarleWRLikelyGD 1948 The growth in vitro of single isolated tissue cells. J Natl Cancer Inst 9 229 246

59. RossJGielenJPackmanSIkawaYLederP 1974 Globin gene expression in cultured erythroleukemic cells. J Mol Biol 87 697 714

60. IshiiKUedaYMatsuoKMatsuuraYKitamuraT 2002 Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology 302 433 444

61. VirginHWIIIBassel-DubyRFieldsBNTylerKL 1988 Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol 62 4594 4604

62. SmithREZweerinkHJJoklikWK 1969 Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39 791 810

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#