A Peptidoglycan Fragment Triggers β-lactam Resistance in
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.
Vyšlo v časopise:
A Peptidoglycan Fragment Triggers β-lactam Resistance in. PLoS Pathog 8(3): e32767. doi:10.1371/journal.ppat.1002571
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002571
Souhrn
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.
Zdroje
1. BonomoRARossoliniGM 2008 Importance of antibiotic resistance and resistance mechanisms. Foreword. Expert Rev Anti Infect Ther 6 549 550
2. FrèreJM 1995 Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16 385 395
3. ZapunAContreras-MartelCVernetT 2008 Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32 361 385
4. HakenbeckRCoyetteJ 1998 Resistant penicillin-binding proteins. Cell Mol Life Sci 54 332 340
5. SauvageEKerffFTerrakMAyalaJACharlierP 2008 The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32 234 258
6. Martinez-MartinezL 2008 Extended-spectrum beta-lactamases and the permeability barrier. Clin Microbiol Infect 14 Suppl 1 82 89
7. QueenanAMBushK 2007 Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20 440 458, table of contents
8. PooleK 2007 Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39 162 176
9. PhilipponAArletG 2006 Beta-lactamases of Gram negative bacteria: never-ending clockwork! Ann Biol Clin (Paris) 64 37 51
10. PhilipponADusartJJorisBFrèreJM 1998 The diversity, structure and regulation of beta-lactamases. Cell Mol Life Sci 54 341 346
11. ZhuYEnglebertSJorisBGhuysenJMKobayashiT 1992 Structure, function, and fate of the BlaR signal transducer involved in induction of beta-lactamase in Bacillus licheniformis. J Bacteriol 174 6171 6178
12. FiléePBenlafyaKDelmarcelleMMoutzourelisGFrèreJM 2002 The fate of the BlaI repressor during the induction of the Bacillus licheniformis BlaP beta-lactamase. Mol Microbiol 44 685 694
13. SherrattDJCollinsJF 1973 Analysis by transformation of the penicillinase system in Bacillus licheniformis. J Gen Microbiol 76 217 230
14. SafoMKZhaoQKoTPMusayevFNRobinsonH 2005 Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J Bacteriol 187 1833 1844
15. MelckebekeHVVreulsCGansPFiléePLlabresG 2003 Solution structural study of BlaI: implications for the repression of genes involved in beta-lactam antibiotic resistance. J Mol Biol 333 711 720
16. RosatoAEKreiswirthBNCraigWAEisnerWClimoMW 2003 mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 47 1460 1463
17. McKinneyTKSharmaVKCraigWAArcherGL 2001 Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators. J Bacteriol 183 6862 6868
18. ZhangHZHackbarthCJChanskyKMChambersHF 2001 A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science 291 1962 1965
19. Garcia-CastellanosRMarreroAMallorqui-FernandezGPotempaJCollM 2003 Three-dimensional structure of MecI. Molecular basis for transcriptional regulation of staphylococcal methicillin resistance. J Biol Chem 278 39897 39905
20. VreulsCFiléePVan MelckebekeHAertsTDe DeynP 2004 Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway. Biochem J 384 179 190
21. DuvalVSwinnenMLepageSBransAGranierB 2003 The kinetic properties of the carboxy terminal domain of the Bacillus licheniformis 749/I BlaR penicillin-receptor shed a new light on the derepression of beta-lactamase synthesis. Mol Microbiol 48 1553 1564
22. FiléePDelmarcelleMThammIJorisB 2001 Use of an ALFexpress DNA sequencer to analyze protein-nucleic acid interactions by band shift assay. Biotechniques 30 1044 1048, 1050-1041
23. JorisB 1982 Determination de la structure primaire de la DD-carboxypeptidase exocellulaire de Streptomyces albus G [PhD Thesis] Liège University of Liège
24. HyslopNEJrMilliganRJ 1974 Chromatography of penicillins, penicilloates, and penicilloylamides on dextran gels. Antimicrob Agents Chemother 5 617 629
25. MayerMMeyerB 2001 Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123 6108 6117
26. Van MelckebekeHVreulsCGansPFiléePLlabresG 2003 Solution structural study of BlaI: implications for the repression of genes involved in beta-lactam antibiotic resistance. J Mol Biol 333 711 720
27. TemplinMFUrsinusAHöltjeJV 1999 A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 18 4108 4117
28. GulickAMSchmidtDMGerltJARaymentI 2001 Evolution of enzymatic activities in the enolase superfamily: crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis. Biochemistry 40 15716 15724
29. SchmidtDMHubbardBKGerltJA 2001 Evolution of enzymatic activities in the enolase superfamily: functional assignment of unknown proteins in Bacillus subtilis and Escherichia coli as L-Ala-D/L-Glu epimerases. Biochemistry 40 15707 15715
30. Marchler-BauerAAndersonJBDerbyshireMKDeWeese-ScottCGonzalesNR 2007 CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35 D237 240
31. SchleiferKHKandlerO 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407 477
32. VollmerWBlanotDde PedroMA 2008 Peptidoglycan structure and architecture. FEMS Microbiol Rev 32 149 167
33. ParkJTUeharaT 2008 How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72 211 227
34. UeharaTParkJT 2008 Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J Bacteriol 190 3914 3922
35. TurnerAJ 2003 Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem Soc Trans 31 723 727
36. AlbistonALYeSChaiSY 2004 Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept Lett 11 491 500
37. Berger-BächiBRohrerS 2002 Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178 165 171
38. AntignacASieradzkiKTomaszA 2007 Perturbation of cell wall synthesis suppresses autolysis in Staphylococcus aureus: evidence for coregulation of cell wall synthetic and hydrolytic enzymes. J Bacteriol 189 7573 7580
39. AndersonJCVoigtCAArkinAP 2007 Environmental signal integration by a modular AND gate. Mol Syst Biol 3 133
40. LitzingerSDuckworthANitzscheKRisingerCWittmannV 2010 Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase. J Bacteriol 192 3132 3143
41. LitzingerSFischerSPolzerPDiederichsKWelteW 2010 Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism. J Biol Chem 285 35675 35684
42. ShahIMLaaberkiMHPophamDLDworkinJ 2008 A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135 486 496
43. HansonNDSandersCC 1999 Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5 881 894
44. Cloud-HansenKAPetersonSBStabbEVGoldmanWEMcFall-NgaiMJ 2006 Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol 4 710 716
45. RoyetJDziarskiR 2007 Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5 264 277
46. EiamphungpornWHelmannJD 2008 The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 67 830 848
47. SullivanMAYasbinREYoungFE 1984 New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29 21 26
48. MsadekTDartoisVKunstFHerbaudMLDenizotF 1998 ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27 899 914
49. GabelicaVVreulsCFiléePDuvalVJorisB 2002 Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry. Rapid Commun Mass Spectrom 16 1723 1728
50. SambrookJRRussellDW 2001 Molecular cloning: a laboratory manual Cold Spring, New York Cold Spring Harbor Laboratory Press, Cold Spring, New York
51. BoudetJDuvalVVan MelckebekeHBlackledgeMAmorosoA 2007 Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against beta-lactam antibiotics. Nucleic Acids Res 35 4384 4395
52. MeyerBWeimarTPetersT 1997 Screening mixtures for biological activity by NMR. Eur J Biochem 246 705 709
53. MayerMMeyerB 1999 Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38 1784 1788
54. LevittMHFreemanRFrenkielT 1982 Broadband heteronuclear decoupling. J Magn Reson 47 328 330
55. PiottoMSaudekVSklenarV 1992 Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2 661 665
56. SchandaPBrutscherB 2005 Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127 8014 8015
57. FieldingL 2007 NMR methods for the determination of protein-ligand dissociation constants. Prog NMR Spectr 51 219 242
58. BouhssACrouvoisierMBlanotDMengin-LecreulxD 2004 Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 279 29974 29980
59. GirardinSETravassosLHHerveMBlanotDBonecaIG 2003 Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 278 41702 41708
60. StenbakCRRyuJHLeulierFPili-FlourySParquetC 2004 Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 173 7339 7348
61. NietoMPerkinsHRLeyh-BouilleMFrèreJMGhuysenJM 1973 Peptide inhibitors of Streptomyces DD-carboxypeptidases. Biochem J 131 163 171
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2012 Číslo 3
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- A Foot in the Door for Dermatophyte Research
- An Entomopathogenic Nematode by Any Other Name
- New Insights into spp.: A Potential Link with Irritable Bowel Syndrome
- Short ORF-Dependent Ribosome Shunting Operates in an RNA Picorna-Like Virus and a DNA Pararetrovirus that Cause Rice Tungro Disease