#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Novel Transporter Dur31 Is a Multi-Stage Pathogenicity Factor


Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine.


Vyšlo v časopise: The Novel Transporter Dur31 Is a Multi-Stage Pathogenicity Factor. PLoS Pathog 8(3): e32767. doi:10.1371/journal.ppat.1002592
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002592

Souhrn

Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine.


Zdroje

1. OddsFC 1988 Candida and Candidosis London Bailliere Tindall

2. WilliamsDLewisM 2011 Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3 doi:10.3402/jom.v3i0.5771

3. ten CateJMKlisFMPereira-CenciTCrielaardWde GrootPW 2009 Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88 105 115

4. FidelPLJr 2006 Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis. Adv Dent Res 19 80 84

5. KleinRSHarrisCASmallCBMollBLesserM 1984 Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N Engl J Med 311 354 358

6. LalKPollockJJSantarpiaRP3rdHellerHMKaufmanHW 1992 Pilot study comparing the salivary cationic protein concentrations in healthy adults and AIDS patients: correlation with antifungal activity. J Acquir Immune Defic Syndr 5 904 914

7. ChallacombeSJNaglikJR 2006 The effects of HIV infection on oral mucosal immunity. Adv Dent Res 19 29 35

8. MartinRWachtlerBSchallerMWilsonDHubeB 2011 Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int J Med Microbiol 301 417 422

9. ZakikhanyKNaglikJRSchmidt-WesthausenAHollandGSchallerM 2007 In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9 2938 2954

10. JanewayCAJrMedzhitovR 2002 Innate immune recognition. Annu Rev Immunol 20 197 216

11. DalleFWachtlerBL'OllivierCHollandGBannertN 2010 Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12 248 271

12. WachtlerBWilsonDHaedickeKDalleFHubeB 2011 From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6 e17046

13. ZhuWFillerSG 2010 Interactions of Candida albicans with epithelial cells. Cell Microbiol 12 273 282

14. PhanQTMyersCLFuYSheppardDCYeamanMR 2007 Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5 e64

15. SunJNSolisNVPhanQTBajwaJSKashlevaH 2010 Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 6 e1001181

16. LoHJKohlerJRDiDomenicoBLoebenbergDCacciapuotiA 1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

17. VylkovaSCarmanAJDanhofHAColletteJRZhouH 2011 The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. MBio 2 e00055 11

18. TsaiPWYangCYChangHTLanCY 2011 Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 6 e17755

19. BalsRWilsonJM 2003 Cathelicidins–a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60 711 720

20. KlotmanMEChangTL 2006 Defensins in innate antiviral immunity. Nat Rev Immunol 6 447 456

21. PetersBMZhuJFidelPLJrScheperMAHackettW 2010 Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Res 10 597 604

22. EdgertonMKoshlukovaSELoTEChrzanBGStraubingerRM 1998 Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem 273 20438 20447

23. FradinCDe GrootPMacCallumDSchallerMKlisF 2005 Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56 397 415

24. PerlrothJChoiBSpellbergB 2007 Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45 321 346

25. CalderoneRA 2002 Candida and Candidiasis Washington D.C. ASM Press 450

26. PfallerMAJonesRNMesserSAEdmondMBWenzelRP 1998 National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 31 327 332

27. WisplinghoffHBischoffTTallentSMSeifertHWenzelRP 2004 Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39 309 317

28. MartinRMoranGPJacobsenIDHeykenADomeyJ 2011 The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLoS One 6 e18394

29. PhanQTBelangerPHFillerSG 2000 Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 68 3485 3490

30. ParkHMyersCLSheppardDCPhanQTSanchezAA 2005 Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 7 499 510

31. SumradaRGorskiMCooperT 1976 Urea transport-defective strains of Saccharomyces cerevisiae. J Bacteriol 125 1048 1056

32. ElBerryHMMajumdarMLCunninghamTSSumradaRACooperTG 1993 Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol 175 4688 4698

33. UemuraTKashiwagiKIgarashiK 2007 Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282 7733 7741

34. NavarathnaDHDasAMorschhaeuserJNickersonKWRobertsDD 2010 Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. Microbiology 157 270 9

35. KumarRChadhaSSaraswatDBajwaJSLiRA 2011 Histatin 5 uptake by Candida albicans utilizes the polyamine transporters Dur3 and Dur31. J Biol Chem 286 43748 58

36. Navarro-GarciaFEismanBFiuzaSMNombelaCPlaJ 2005 The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology 151 2737 2749

37. HerreroABLopezMCGarciaSSchmidtASpaltmannF 1999 Control of filament formation in Candida albicans by polyamine levels. Infect Immun 67 4870 4878

38. GhoshSNavarathnaDHRobertsDDCooperJTAtkinAL 2009 Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 77 1596 1605

39. KumamotoCAVincesMD 2005 Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol 7 1546 1554

40. ThewesSKretschmarMParkHSchallerMFillerSG 2007 In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63 1606 1628

41. UrbanCFErmertDSchmidMAbu-AbedUGoosmannC 2009 Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5 e1000639

42. NathanC 2006 Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6 173 182

43. JungH 2002 The sodium/substrate symporter family: structural and functional features. FEBS Lett 529 73 77

44. JangWSBajwaJSSunJNEdgertonM 2010 Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Mol Microbiol 77 354 370

45. TorresSRGarzino-DemoAMeillerTFMeeksVJabra-RizkMA 2009 Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52 11 15

46. MochonABLiuH 2008 The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog 4 e1000190

47. LiXSReddyMSBaevDEdgertonM 2003 Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278 28553 28561

48. LiXSSunJNOkamoto-ShibayamaKEdgertonM 2006 Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 281 22453 22463

49. SkrzypekMSArnaudMBCostanzoMCInglisDOShahP 2010 New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res 38 D428 432

50. WilsonDThewesSZakikhanyKFradinCAlbrechtA 2009 Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9 688 700

51. ParkHLiuYSolisNSpotkovJHamakerJ 2009 Transcriptional responses of candida albicans to epithelial and endothelial cells. Eukaryot Cell 8 1498 1510

52. ChiangLYSheppardDCBrunoVMMitchellAPEdwardsJEJr 2007 Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell Microbiol 9 233 245

53. FillerSGSheppardDC 2006 Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2 e129

54. EdgertonMKoshlukovaSEAraujoMWPatelRCDongJ 2000 Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother 44 3310 3316

55. FillerSGSwerdloffJNHobbsCLuckettPM 1995 Penetration and damage of endothelial cells by Candida albicans. Infect Immun 63 976 983

56. SanchezAAJohnstonDAMyersCEdwardsJEJrMitchellAP 2004 Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect Immun 72 598 601

57. SchwanWRCoulterSNNgEYLanghorneMHRitchieHD 1998 Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect Immun 66 567 572

58. IgarashiKKashiwagiK 2010 Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48 506 512

59. SunJNLiWJangWSNayyarNSuttonMD 2008 Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Mol Microbiol 70 1246 1260

60. VylkovaSSunJNEdgertonM 2007 The role of released ATP in killing Candida albicans and other extracellular microbial pathogens by cationic peptides. Purinergic Signal 3 91 97

61. MeillerTFHubeBSchildLShirtliffMEScheperMA 2009 A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 4 e5039

62. PalkovaZDevauxFIcicovaMMinarikovaLLe CromS 2002 Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13 3901 3914

63. BensenESMartinSJLiMBermanJDavisDA 2004 Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54 1335 1351

64. LisMLiuTTBarkerKSRogersPDBobekLA 2010 Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. FEMS Yeast Res 10 579 586

65. GolaSMartinRWaltherADunklerAWendlandJ 2003 New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20 1339 1347

66. WilsonRBDavisDMitchellAP 1999 Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181 1868 1874

67. WaltherAWendlandJ 2003 An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42 339 343

68. MuradAMLeePRBroadbentIDBarelleCJBrownAJ 2000 CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16 325 327

69. DongJVylkovaSLiXSEdgertonM 2003 Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans. J Dent Res 82 748 752

70. RuissenALGroeninkJHelmerhorstEJWalgreen-WeteringsEVan't HofW 2001 Effects of histatin 5 and derived peptides on Candida albicans. Biochem J 356 361 368

71. HelmerhorstEJBreeuwerPvan't HofWWalgreen-WeteringsEOomenLC 1999 The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274 7286 7291

72. LiuHKohlerJFinkGR 1994 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266 1723 1726

73. KumamotoCA 2005 A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102 5576 5581

74. RupniakHTRowlattCLaneEBSteeleJGTrejdosiewiczLK 1985 Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75 621 635

75. GillumAMTsayEYKirschDR 1984 Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198 179 182

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#