Chemicals, Climate, and Control: Increasing the Effectiveness of Malaria Vector Control Tools by Considering Relevant Temperatures
article has not abstract
Vyšlo v časopise:
Chemicals, Climate, and Control: Increasing the Effectiveness of Malaria Vector Control Tools by Considering Relevant Temperatures. PLoS Pathog 9(10): e32767. doi:10.1371/journal.ppat.1003602
Kategorie:
Opinion
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003602
Souhrn
article has not abstract
Zdroje
1. WHO (2012) World malaria report 2012. Geneva: World Health Organization.
2. MaxmenA (2012) Malaria surge feared. Nature 485: 293.
3. AlonsoPL, TannerM (2013) Public health challenges and prospects for malaria control and elimination. Nat Med 19: 150–155.
4. WHO (2005) Guidelines for laboratory and field testing of long-lasting insecticidal mosquito nets. Geneva: World Health Organization.
5. WHO (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva: World Health Organization.
6. RussellT, GovellaN, AziziS, DrakeleyC, KachurSP, et al. (2011) Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: 80.
7. MontgomeryJC, MacdonaldJA (1990) Effects of temperature on nervous system: implications for behavioral performance. Am J Physiol Regul Integr Comp Physiol 259: R191–R196.
8. GilloolyJF, BrownJH, WestGB, SavageVM, CharnovEL (2001) Effects of size and temperature on metabolic rate. Science 293: 2248–2251.
9. WHO (2012) WHO recommended long-lasting insecticidal mosquito nets. Geneva: World Health Organization.
10. WHO (2007) WHO recommended insecticide products treatment of mosquito nets for malaria vector control. Geneva: World Health Organization.
11. WHO (2009) WHO recommended insecticides for indoor residual spraying against malaria vectors. Geneva: World Health Organization.
12. Schleier III JJ, Peterson RKD (2011) Pyrethrins and pyrethroid insecticides. In: López O, Fernándes-Bolaños JG, editors. Green trends in insect control. London: Royal Society of Chemistry. pp. 94–131.
13. JohnsonDL (1990) Influence of temperature on toxicity of two pyrethroids to grasshoppers (Orthoptera: Acrididae). J Econ Entomol 83: 366–373.
14. ScottJG, MatsumuraF (1983) Evidence for two types of toxic actions of pyrethroids on susceptible and DDT-resistant german cockroaches. Pestic Biochem Physiol 19: 141–150.
15. SparksTC, PavloffAM, RoseRL, ClowerDF (1983) Temperature-toxicity relationships of pyrethroids on Heliothis virescens (F.) (Lepidoptera: Noctuidae) and Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae). J Econ Entomol 76: 243–246.
16. LiH, FengT, LiangP, ShiX, GaoX, et al. (2006) Effect of temperature on toxicity of pyrethroids and endosulfan, activity of mitochondrial Na+–K+-ATPase and Ca2+–Mg2+-ATPase in Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Pestic Biochem Physiol 86: 151–156.
17. SparksTC, ShourMH, WellemeyerEG (1982) Temperature-toxicity relationships of pyrethroids on three Lepidopterans. J Econ Entomol 75: 643–646.
18. HodjatiMH, CurtisCF (1999) Effects of permethrin at different temperatures on pyrethroid-resistant and susceptible strains of Anopheles. Med Vet Entomol 13: 415–422.
19. HadawayAB, BarlowF (1963) The influence of environmental conditions on the contact toxicity of some insecticide deposits to adult mosquitos, Anopheles stephensi Liston. Bull Entomol Res 54: 329–344.
20. WHO (2007) Insecticide-treated mosquito nets: a position statement. Available: http://www.who.int/malaria/publications/atoz/itnspospaperfinal/en/index.html. Accessed 7 September 2013.
21. LindbladeKA, DotsonE, HawleyWA, BayohN, WilliamsonJ, et al. (2005) Evaluation of long-lasting insecticidal nets after 2 years of household use. Trop Med Int Health 10: 1141–1150.
22. OkumuF, ChipwazaB, MadumlaE, MbeyelaE, LingambaG, et al. (2012) Implications of bio-efficacy and persistence of insecticides when indoor residual spraying and long-lasting insecticide nets are combined for malaria prevention. Malar J 11: 378.
23. EtangJ, NwaneP, MbidaJ, PiameuM, MangaB, et al. (2011) Variations of insecticide residual bio-efficacy on different types of walls: results from a community-based trial in south Cameroon. Malar J 10: 333.
24. MasenduHT, NziramasangaN, MuchechemeraC (2002) Low insecticide deposit rates detected during routine indoor residual spraying for malaria vector control in two districts of Gokwe, Zimbabwe. J Am Mosq Control Assoc 18: 202–206.
25. KiszewskiA, MellingerA, SpielmanA, MalaneyP, SachsSE, et al. (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70: 486–498.
26. MusserFR, SheltonAM (2005) The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag Sci 61: 508–510.
27. MaY-h, GaoZ-l, DangZ-h, LiY-f, PanW-l (2012) Effect of temperature on the toxicity of several insecticides to Apolygus lucorum (Heteroptera: Miridae). J Pestic Sci 37: 135–139.
28. BoinaDR, OnagbolaEO, SalyaniM, StelinskiLL (2009) Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol 102: 685–691.
29. WHO (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticide on treated surfaces. Geneva: World Health Organization.
30. ScottJG (1987) Effect of temperature on the toxicity of S-bioallethrin andcypermethrin to susceptible and kdr-resistant strains of Blattella germanica (L.) (Dictyoptera: Blattellidae). Bull Entomol Res 77: 431–435.
31. BrownMA (1987) Temperature-dependent pyrethroid resistance in a pyrethroid-selected colony of Heliothis virescens (F) (Lepidoptera, noctuidae). J Econ Entomol 80: 330–332.
32. GovellaNJ, FergusonH (2012) Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol 3: 199–199.
33. RiveronJ, BotoT, AlcortaE (2009) The effect of environmental temperature on olfactory perception in Drosophila melanogaster. J Insect Physiol 55: 943–951.
34. Stull RB (2000) Meteorology for scientists and engineers. Pacific Grove: Brooks/Cole. 528 p.
35. KodadováB (1996) Resolution of pheromone pulses in receptor cells of Antheraea polyphemus at different temperatures. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 179: 301–310.
36. BakerTC, HanssonBS, LöfstedtC, LöfqvistJ (1988) Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight. Proc Natl Acad Sci U S A 85: 9826–9830.
37. LinnC, CampbellM, RoelofsW (1991) The effects of different blend ratios and temperature on the active space of the Oriental fruit moth sex pheromone. Physiol Entomol 16: 211–222.
38. CharltonRE, KannoH, CollinsRD, CardeRT (1993) Influence of pheromone concentration and ambient temperature on flight of the gypsy moth, Lymantria dispar, in a sustained-flight wind tunnel. Physiol Entomol 18: 349–362.
39. NjiruB, MukabanaW, TakkenW, KnolsB (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5: 39.
40. LeskeyTC, ZhangA (2007) Impact of temperature on plum curculio (Coleoptera: Curculionidae) responses to odor-baited traps. J Econ Entomol 100: 343–349.
41. SmallegangeRC, Bukovinszkine-KissG, OtienoB, MbadiPA, TakkenW, et al. (2012) Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays. Physiol Entomol 37: 60–71.
42. SeenivasaganT, SharmaKR, PrakashS (2012) Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate. Acta Trop 124: 54–61.
43. van den BergH, ZaimM, YadavR, SoaresA, AmeneshewaB, et al. (2012) Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect 120: 577–582.
44. HinksCF, SpurrDT (1991) The efficacy and cost benefits of binary mixtures of deltamethrin combined with other insecticides or synergists against grasshoppers at two temperatures. J Agric Entomol 8: 29–39.
45. HijmansRJ, CameronSE, ParraJL, JonesPG, JarvisA (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25: 1965–1978.
46. BlanfordJI, BlanfordS, CraneRG, MannME, PaaijmansKP, et al. (2013) Implications of temperature variation for malaria parasite development across Africa. Sci Rep 3: 1300.
47. AlzogarayRA, ZerbaEN (1996) Comparative toxicity of deltamethrin and cis-permethrin on first instars of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 33: 58–62.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Dengue Vaccines: Strongly Sought but Not a Reality Just Yet
- MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb
- Alternative Roles for CRISPR/Cas Systems in Bacterial Pathogenesis
- RNA Biology in Fungal Phytopathogens