#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Feeding Uninvited Guests: mTOR and AMPK Set the Table for Intracellular Pathogens


article has not abstract


Vyšlo v časopise: Feeding Uninvited Guests: mTOR and AMPK Set the Table for Intracellular Pathogens. PLoS Pathog 9(10): e32767. doi:10.1371/journal.ppat.1003552
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003552

Souhrn

article has not abstract


Zdroje

1. HoodMI, SkaarEP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10: 525–537.

2. TerryLJ, VastagL, RabinowitzJD, ShenkT (2012) Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109: 3071–3076.

3. PechousRD, McCarthyTR, ZahrtTC (2009) Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 73: 684–711.

4. InokiK, KimJ, GuanKL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381–400.

5. WalshD, PerezC, NotaryJ, MohrI (2005) Regulation of the translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. J Virol 79: 8057–8064.

6. McArdleJ, MoormanNJ, MungerJ (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8: e1002502 doi:10.1371/journal.ppat.1002502

7. KudchodkarSB, Del PreteGQ, MaguireTG, AlwineJC (2007) AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection. J Virol 81: 3649–3651.

8. SpencerCM, SchaferXL, MoormanNJ, MungerJ (2011) Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 85: 5814–5824.

9. MoormanNJ, CristeaIM, TerhuneSS, RoutMP, ChaitBT, et al. (2008) Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe 3: 253–262.

10. YuY, KudchodkarSB, AlwineJC (2005) Effects of simian virus 40 large and small tumor antigens on mammalian target of rapamycin signaling: small tumor antigen mediates hypophosphorylation of eIF4E-binding protein 1 late in infection. J Virol 79: 6882–6889.

11. KumarSH, RangarajanA (2009) Simian virus 40 small T antigen activates AMPK and triggers autophagy to protect cancer cells from nutrient deprivation. J Virol 83: 8565–8574.

12. YuY, AlwineJC (2006) 19S late mRNAs of simian virus 40 have an internal ribosome entry site upstream of the virion structural protein 3 coding sequence. J Virol 80: 6553–6558.

13. GastaminzaP, ChengG, WielandS, ZhongJ, LiaoW, et al. (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82: 2120–2129.

14. DiamondDL, SyderAJ, JacobsJM, SorensenCM, WaltersK-A, et al. (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6: e1000719 doi:10.1371/journal.ppat.1000719

15. MankouriJ, TedburyPR, GrettonS, HughesME, GriffinSD, et al. (2010) Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proc Natl Acad Sci U S A 107: 11549–11554.

16. BoseSK, ShrivastavaS, MeyerK, RayRB, RayR (2012) Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J Virol 86: 6315–6322.

17. NakashimaK, TakeuchiK, ChiharaK, HottaH, SadaK (2011) Inhibition of hepatitis C virus replication through adenosine monophosphate-activated protein kinase-dependent and -independent pathways. Microbiol Immunol 55: 774–782.

18. KasaiD, AdachiT, DengL, Nagano-FujiiM, SadaK, et al. (2009) HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. J Hepatol 50: 883–894.

19. DanielJ, MaamarH, DebC, SirakovaTD, KolattukudyPE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7: e1002093 doi:10.1371/journal.ppat.1002093

20. CocchiaroJL, KumarY, FischerER, HackstadtT, ValdiviaRH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci U S A 105: 9379–9384.

21. MoserTS, SchiefferD, CherryS (2012) AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis. PLoS Pathog 8: e1002661 doi:10.1371/journal.ppat.1002661

22. ZhangHS, WuMR (2009) SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase. Virus Res 146: 51–57.

23. MehlaR, Bivalkar-MehlaS, ZhangR, HandyI, AlbrechtH, et al. (2010) Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS ONE 5: e11160 doi:10.1371/journal.pone.0011160

24. RosenzweigD, SmithD, OpperdoesF, SternS, OlafsonRW, et al. (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22: 590–602.

25. RabhiI, RabhiS, Ben-OthmanR, RascheA (2012) Sysco Consortium, (2012) et al. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 6: e1763 doi:10.1371/journal.pntd.0001763

26. JaramilloM, GomezMA, LarssonO, ShioMT, TopisirovicI, et al. (2011) Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe 9: 331–341.

27. TakahashiM, WatariE, ShinyaE, ShimizuT, TakahashiH (2007) Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. Antiviral Res 75: 152–158.

28. DereticV, LevineB (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5: 527–549.

29. HeatonNS, RandallG (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8: 422–432.

30. SteeleS, BruntonJ, ZiehrB, Taft-BenzS, MoormanN, et al. (2013) Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog 9: e1003562 doi:10.1371/journal.ppat.1003562

31. ChongA, WehrlyTD, ChildR, HansenB, HwangS, et al. (2012) Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy 8: 1342–1356.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#