RNA Biology in Fungal Phytopathogens
article has not abstract
Vyšlo v časopise:
RNA Biology in Fungal Phytopathogens. PLoS Pathog 9(10): e32767. doi:10.1371/journal.ppat.1003617
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003617
Souhrn
article has not abstract
Zdroje
1. MooreMJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309: 1514–1518.
2. FeldbrüggeM, ZarnackK, VollmeisterE, BaumannS, KoepkeJ, et al. (2008) The posttranscriptional machinery of Ustilago maydis. Fungal Genet Biol 45: S40–S46.
3. VollmeisterE, FeldbrüggeM (2010) Posttranscriptional control of growth and development in Ustilago maydis. Curr Opin Microbiol 13: 693–699.
4. BrefortT, DoehlemannG, Mendoza-MendozaA, ReissmannS, DjameiA, et al. (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47: 423–445.
5. VollmeisterE, SchipperK, BaumannS, HaagC, PohlmannT, et al. (2012) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36: 59–77.
6. SchererM, HeimelK, StarkeV, KämperJ (2006) The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18: 2388–2401.
7. HeimelK, SchererM, SchulerD, KämperJ (2010) The Ustilago maydis Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. Plant Cell 22: 2908–2922.
8. FranceschettiM, BuenoE, WilsonRA, TuckerSL, Gómez-MenaC, et al. (2011) Fungal virulence and development is regulated by alternative pre-mRNA 3′end processing in Magnaporthe oryzae. PLoS Pathog 7: e1002441 doi:10.1371/journal.ppat.1002441
9. BechtP, VollmeisterE, FeldbrüggeM (2005) Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot Cell 4: 121–133.
10. VollmeisterE, HaagC, ZarnackK, BaumannS, KönigJ, et al. (2009) Tandem KH domains of Khd4 recognize AUACCC and are essential for regulation of morphology as well as pathogenicity in Ustilago maydis. RNA 15: 2206–2218.
11. DonaldsonME, SavilleBJ (2013) Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis. Mol Microbiol 89: 29–51.
12. LaurieJD, AliS, LinningR, MannhauptG, WongP, et al. (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24: 1733–1745.
13. DrinnenbergIA, FinkGR, BartelDP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333: 1592.
14. PrattCA, MowryKL (2013) Taking a cellular road-trip: mRNA transport and anchoring. Curr Opin Cell Biol 25: 99–106.
15. BechtP, KönigJ, FeldbrüggeM (2006) The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci 119: 4964–4973.
16. KönigJ, BaumannS, KoepkeJ, PohlmannT, ZarnackK, et al. (2009) The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28: 1855–1866.
17. BaumannS, PohlmannT, JungbluthM, BrachmannA, FeldbrüggeM (2012) Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 125: 2740–2752.
18. GöhreV, VollmeisterE, BölkerM, FeldbrüggeM (2012) Microtubule-dependent membrane dynamics of Ustilago maydis: trafficking and function of Rab5a-positive endosomes. Commun Integr Biol 5: 482–487.
19. SteinbergG (2012) The transport machinery for motility of fungal endosomes. Fungal Genet Biol 49: 675–676.
20. ElsonSL, NobleSM, SolisNV, FillerSG, JohnsonAD (2009) An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLoS Genet 5: e1000664 doi:10.1371/journal.pgen.1000664
21. FreitagJ, AstJ, BölkerM (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485: 522–525.
22. van der WeerdenNL, BleackleyMR, AndersonMA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70: 3545–3570.
23. BertiniL, ProiettiS, AleandriMP, MondelloF, SandiniS, et al. (2012) Modular structure of HEL protein from Arabidopsis reveals new potential functions for PR-4 proteins. Biol Chem 393: 1533–1546.
24. StirpeF (2013) Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 67: 12–16.
25. StaigerD, KorneliC, LummerM, NavarroL (2013) Emerging role for RNA-based regulation in plant immunity. New Phytol 197: 394–404.
26. BlankA, DekkerCA (1975) Differential activity staining: its use in characterization of guanylyl-specific ribonuclease in the genus Ustilago. Proc Natl Acad Sci U S A 72: 4914–4917.
27. NicaiseV, JoeA, JeongBR, KorneliC, BoutrotF, et al. (2013) Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J 32: 701–712.
28. NavarroL, DunoyerP, JayF, ArnoldB, DharmasiriN, et al. (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436–439.
29. NavarroL, JayF, NomuraK, HeSY, VoinnetO (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321: 964–967.
30. QiaoY, LiuL, XiongQ, FloresC, WongJ, et al. (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45: 330–333.
31. KönigJ, ZarnackK, RotG, CurkT, KayikciM, et al. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17: 909–915.
32. CastelloA, FischerB, EichelbaumK, HorosR, BeckmannBM, et al. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149: 1393–1406.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Dengue Vaccines: Strongly Sought but Not a Reality Just Yet
- MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb
- Alternative Roles for CRISPR/Cas Systems in Bacterial Pathogenesis
- RNA Biology in Fungal Phytopathogens