#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

NsrR, GadE, and GadX Interplay in Repressing Expression of the O157:H7 LEE Pathogenicity Island in Response to Nitric Oxide


Expression of genes of the locus of enterocyte effacement (LEE) is essential for adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells. Gut factors that may modulate LEE gene expression may therefore influence the outcome of the infection. Because nitric oxide (NO) is a critical effector of the intestinal immune response that may induce transcriptional regulation in enterobacteria, we investigated its influence on LEE expression in EHEC O157:H7. We demonstrate that NO inhibits the expression of genes belonging to LEE1, LEE4, and LEE5 operons, and that the NO sensor nitrite-sensitive repressor (NsrR) is a positive regulator of these operons by interacting directly with the RNA polymerase complex. In the presence of NO, NsrR detaches from the LEE1/4/5 promoter regions and does not activate transcription. In parallel, two regulators of the acid resistance pathway, GadE and GadX, are induced by NO through an indirect NsrR-dependent mechanism. In this context, we show that the NO-dependent LEE1 down-regulation is due to absence of NsrR-mediated activation and to the repressor effect of GadX. Moreover, the inhibition of expression of LEE4 and LEE5 by NO is due to loss of NsrR-mediated activation, to LEE1 down-regulation and to GadE up-regulation. Lastly, we establish that chemical or cellular sources of NO inhibit the adherence of EHEC to human intestinal epithelial cells. These results highlight the critical effect of NsrR in the regulation of the LEE pathogenicity island and the potential role of NO in the limitation of colonization by EHEC.


Vyšlo v časopise: NsrR, GadE, and GadX Interplay in Repressing Expression of the O157:H7 LEE Pathogenicity Island in Response to Nitric Oxide. PLoS Pathog 10(1): e32767. doi:10.1371/journal.ppat.1003874
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003874

Souhrn

Expression of genes of the locus of enterocyte effacement (LEE) is essential for adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells. Gut factors that may modulate LEE gene expression may therefore influence the outcome of the infection. Because nitric oxide (NO) is a critical effector of the intestinal immune response that may induce transcriptional regulation in enterobacteria, we investigated its influence on LEE expression in EHEC O157:H7. We demonstrate that NO inhibits the expression of genes belonging to LEE1, LEE4, and LEE5 operons, and that the NO sensor nitrite-sensitive repressor (NsrR) is a positive regulator of these operons by interacting directly with the RNA polymerase complex. In the presence of NO, NsrR detaches from the LEE1/4/5 promoter regions and does not activate transcription. In parallel, two regulators of the acid resistance pathway, GadE and GadX, are induced by NO through an indirect NsrR-dependent mechanism. In this context, we show that the NO-dependent LEE1 down-regulation is due to absence of NsrR-mediated activation and to the repressor effect of GadX. Moreover, the inhibition of expression of LEE4 and LEE5 by NO is due to loss of NsrR-mediated activation, to LEE1 down-regulation and to GadE up-regulation. Lastly, we establish that chemical or cellular sources of NO inhibit the adherence of EHEC to human intestinal epithelial cells. These results highlight the critical effect of NsrR in the regulation of the LEE pathogenicity island and the potential role of NO in the limitation of colonization by EHEC.


Zdroje

1. KarmaliMA, GannonV, SargeantJM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140: 360–370.

2. McDanielTK, JarvisKG, DonnenbergMS, KaperJB (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 92: 1664–1668.

3. GarmendiaJ, PhillipsAD, CarlierMF, ChongY, SchullerS, et al. (2004) TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6: 1167–1183.

4. GruenheidS, SekirovI, ThomasNA, DengW, O'DonnellP, et al. (2004) Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 51: 1233–1249.

5. HaufN, ChakrabortyT (2003) Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J Immunol 170: 2074–2082.

6. GobertAP, CosteA, GuzmanCA, VareilleM, HindreT, et al. (2008) Modulation of chemokine gene expression by Shiga-toxin producing Escherichia coli belonging to various origins and serotypes. Microbes Infect 10: 159–165.

7. CollingtonGK, BoothIW, DonnenbergMS, KaperJB, KnuttonS (1998) Enteropathogenic Escherichia coli virulence genes encoding secreted signalling proteins are essential for modulation of Caco-2 cell electrolyte transport. Infect Immun 66: 6049–6053.

8. TreeJJ, RoeAJ, FlockhartA, McAteerSP, XuX, et al. (2011) Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol 80: 1349–1365.

9. DengW, PuenteJL, GruenheidS, LiY, VallanceBA, et al. (2004) Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101: 3597–3602.

10. ElliottSJ, SperandioV, GironJA, ShinS, MelliesJL, et al. (2000) The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 68: 6115–6126.

11. SperandioV, MelliesJL, DelahayRM, FrankelG, CrawfordJA, et al. (2000) Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol Microbiol 38: 781–793.

12. BhattS, RomeoT, KalmanD (2011) Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. Trends Microbiol 19: 217–224.

13. MaZ, RichardH, TuckerDL, ConwayT, FosterJW (2002) Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184: 7001–7012.

14. TuckerDL, TuckerN, MaZ, FosterJW, MirandaRL, et al. (2003) Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185: 3190–3201.

15. HommaisF, KrinE, CoppeeJY, LacroixC, YeramianE, et al. (2004) GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150: 61–72.

16. Kailasan VanajaS, BergholzTM, WhittamTS (2009) Characterization of the Escherichia coli O157:H7 Sakai GadE regulon. J Bacteriol 191: 1868–1877.

17. VareilleM, de SabletT, HindreT, MartinC, GobertAP (2007) Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 104: 10199–10204.

18. BodenmillerDM, SpiroS (2006) The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188: 874–881.

19. VareilleM, RannouF, ThelierN, GlasserAL, de SabletT, et al. (2008) Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J Immunol 180: 5720–5726.

20. TatsunoI, NaganoK, TaguchiK, RongL, MoriH, et al. (2003) Increased adherence to Caco-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157:H7. Infect Immun 71: 2598–2606.

21. ShinS, Castanie-CornetMP, FosterJW, CrawfordJA, BrinkleyC, et al. (2001) An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 41: 1133–1150.

22. SayedAK, OdomC, FosterJW (2007) The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153: 2584–2592.

23. TramontiA, ViscaP, De CanioM, FalconiM, De BiaseD (2002) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184: 2603–2613.

24. SperandioV, MelliesJL, NguyenW, ShinS, KaperJB (1999) Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96: 15196–15201.

25. SperandioV, LiCC, KaperJB (2002) Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect Immun 70: 3085–3093.

26. PorterME, MitchellP, FreeA, SmithDG, GallyDL (2005) The LEE1 promoters from both enteropathogenic and enterohemorrhagic Escherichia coli can be activated by PerC-like proteins from either organism. J Bacteriol 187: 458–472.

27. LodatoPB, KaperJB (2009) Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Mol Microbiol 71: 273–290.

28. HaackKR, RobinsonCL, MillerKJ, FowlkesJW, MelliesJL (2003) Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect Immun 71: 384–392.

29. PartridgeJD, BodenmillerDM, HumphrysMS, SpiroS (2009) NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 73: 680–694.

30. LeeDJ, MinchinSD, BusbySJ (2012) Activating transcription in bacteria. Annu Rev Microbiol 66: 125–152.

31. BusbyS, EbrightRH (1999) Transcription activation by catabolite activator protein (CAP). J Mol Biol 293: 199–213.

32. BougdourA, LelongC, GeiselmannJ (2004) Crl, a low temperature-induced protein in Escherichia coli that binds directly to the stationary phase sigma subunit of RNA polymerase. J Biol Chem 279: 19540–19550.

33. RodionovDA, DubchakIL, ArkinAP, AlmEJ, GelfandMS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1: e55.

34. FilenkoN, SpiroS, BrowningDF, SquireD, OvertonTW, et al. (2007) The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189: 4410–4417.

35. KarlinseyJE, BangIS, BeckerLA, FrawleyER, PorwollikS, et al. (2012) The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol Microbiol 85: 1179–1193.

36. TuckerNP, HicksMG, ClarkeTA, CrackJC, ChandraG, et al. (2008) The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One 3: e3623.

37. TuckerNP, Le BrunNE, DixonR, HutchingsMI (2010) There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol 18: 149–156.

38. IyodaS, WatanabeH (2004) Positive effects of multiple pch genes on expression of the locus of enterocyte effacement genes and adherence of enterohaemorrhagic Escherichia coli O157:H7 to HEp-2 cells. Microbiology 150: 2357–2571.

39. O'BrienAO, LivelyTA, ChenME, RothmanSW, FormalSB (1983) Escherichia coli O157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (SHIGA) like cytotoxin. Lancet 1: 702.

40. BeloinC, ValleJ, Latour-LambertP, FaureP, KzreminskiM, et al. (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51: 659–674.

41. DatsenkoKA, WannerBL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645.

42. LargeTM, WalkST, WhittamTS (2005) Variation in acid resistance among shiga toxin-producing clones of pathogenic Escherichia coli. Appl Environ Microbiol 71: 2493–2500.

43. LanoisA, JubelinG, GivaudanA (2008) FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Mol Microbiol 68: 516–533.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#