Synthesis and Biological Properties of Fungal Glucosylceramide
article has not abstract
Vyšlo v časopise:
Synthesis and Biological Properties of Fungal Glucosylceramide. PLoS Pathog 10(1): e32767. doi:10.1371/journal.ppat.1003832
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003832
Souhrn
article has not abstract
Zdroje
1. LeipeltM, WarneckeD, ZahringerU, OttC, MullerF, et al. (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276: 33621–33629.
2. RhomeR, McQuistonT, KechichianT, BielawskaA, HennigM, et al. (2007) Biosynthesis and immunogenicity of glucosylceramide in Cryptococcus neoformans and other human pathogens. Eukaryot Cell 6: 1715–1726.
3. WarneckeD, HeinzE (2003) Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60: 919–941.
4. NimrichterL, RodriguesML (2011) Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2: 212.
5. KaufmanB, BasuS, RosemanS (1971) Isolation of glucosylceramides from yeast (Hansenula ciferri). J Biol Chem 246: 4266–4271.
6. RittershausPC, KechichianTB, AllegoodJ, MerrillAHJ, HennigM, et al. (2006) Glucosylceramide is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116: 1651–1659.
7. MaH, CroudaceJE, LammasDA, MayRC (2006) Expulsion of live pathogenic yeast by macrophages. Curr Biol 16: 2156–2160.
8. AlvarezM, CasadevallA (2006) Phagosome Extrusion and Host-Cell Survival after Cryptococcus neoformans Phagocytosis by Macrophages. Curr Biol 16: 2161–2165.
9. GarciaJ, SheaJ, Alvarez-VasquezF, QureshiA, LubertoC, et al. (2008) Mathematical modeling of pathogenicity of Cryptococcus neoformans. Mol Sys Biol 4: 183–195.
10. FanW, KrausPR, BoilyMJ, HeitmanJ (2005) Cryptococcus neoformans Gene Expression during Murine Macrophage Infection. Eukaryot Cell 4: 1420–1433.
11. LubertoC, ToffalettiDL, WillsEA, TuckerSC, CasadevallA, et al. (2001) Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev 15: 201–212.
12. SheaJ, KechichianTB, LubertoC, Del PoetaM (2006) The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C (Isc1) confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun 74: 5977–5988.
13. CheonSA, BalJ, SongY, HwangHM, KimAR, et al. (2012) Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol 83: 728–745.
14. ToledoMS, LeverySB, StrausAH, SuzukiE, MomanyM, et al. (1999) Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-Delta 3-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry 38: 7294–7306.
15. RodriguesML, TravassosLR, MirandaKR, FranzenAJ, RozentalS, et al. (2000) Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68: 7049–7060.
16. NakaseM, TaniM, MoritaT, KitamotoHK, KashiwazakiJ, et al. (2010) Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in Schizosaccharomyces pombe. J Cell Sci 123: 1578–1587.
17. RodriguesML, NimrichterL, OliveiraDL, FrasesS, MirandaK, et al. (2007) Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6: 48–59.
18. TernesP, SperlingP, AlbrechtS, FrankeS, CreggJM, et al. (2006) Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem 281: 5582–5592.
19. SinghA, NaC, SilvaLC, PrietoM, FutermanAH, et al. (2012) Membrane lipid topography controlled by sphingolipids regulates pathogenicity of Cryptococcus neoformans. Cell Microbiol 14: 500–516.
20. RhomeR, SinghA, KechichianT, DragoM, MoraceG, et al. (2011) Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal. PLoS One 6: e15572 doi:10.1371/journal.pone.0015572
21. KeR, IngramPJ, HaynesK (2013) An integrative model of ion regulation in yeast. PLoS Comput Biol 9: e1002879 doi:10.1371/journal.pcbi.1002879
22. ArinoJ (2010) Integrative responses to high pH stress in S. cerevisiae. OMICS 14: 517–523.
23. BensenES, MartinSJ, LiM, BermanJ, DavisDA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54: 1335–1351.
24. MoranGP (2012) Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis. FEMS Yeast Res 12: 918–923.
25. O'MearaTR, NortonD, PriceMS, HayC, ClementsMF, et al. (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6: e1000776 doi:10.1371/journal.ppat.1000776
26. NiemeyerMI, Gonzalez-NiloFD, ZunigaL, GonzalezW, CidLP, et al. (2007) Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel. Proc Natl Acad Sci U S A 104: 666–671.
27. StalmansS, WynendaeleE, BrackeN, GevaertB, D'HondtM, et al. (2013) Chemical-functional diversity in cell-penetrating peptides. PLoS One 8: e71752 doi: 10.1371/journal.pone.0071752
28. MaggioB (1985) Geometric and thermodynamic restrictions for the self-assembly of glycosphingolipid-phospholipid systems. Biochim Biophys Acta 815: 245–258.
29. PerilloMA, ScarsdaleNJ, YuRK, MaggioB (1994) Modulation by gangliosides of the lamellar-inverted micelle (hexagonal II) phase transition in mixtures containing phosphatidylethanolamine and dioleoylglycerol. Proc Natl Acad Sci U S A 91: 10019–10023.
30. OuraT, KajiwaraS (2010) Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. Microbiology 156: 1234–1243.
31. RamamoorthyV, CahoonEB, ThokalaM, KaurJ, LiJ, et al. (2009) Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum. Eukaryot Cell 8: 217–229.
32. BertiniS, ColomboAL, TakahashiHK, StrausAH (2007) Expression of antibodies directed to Paracoccidioides brasiliensis glycosphingolipids during the course of paracoccidioidomycosis treatment. Clin Vaccine Immunol 14: 150–156.
33. ToledoMS, LeverySB, StrausAH, TakahashiHK (2000) Dimorphic expression of cerebrosides in the mycopathogen Sporothrix schenckii. J Lipid Res 41: 797–806.
34. ToledoMS, SuzukiE, LeverySB, StrausAH, TakahashiHK (2001) Characterization of monoclonal antibody MEST-2 specific to glucosylceramide of fungi and plants. Glycobiology 11: 105–112.
35. da SilvaAF, RodriguesML, FariasSE, AlmeidaIC, PintoMR, et al. (2004) Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. FEBS Lett 561: 137–143.
36. LeverySB, MomanyM, LindseyR, ToledoMS, ShaymanJA, et al. (2002) Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525: 59–64.
37. RittenourWR, ChenM, CahoonEB, HarrisSD (2011) Control of glucosylceramide production and morphogenesis by the Bar1 ceramide synthase in Fusarium graminearum. PLoS One 6: e19385 doi:10.1371/journal.pone.0019385
38. UemuraM, JosephRA, SteponkusPL (1995) Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). Plant Physiol 109: 15–30.
39. TagliariL, ToledoMS, LacerdaTG, SuzukiE, StrausAH, et al. (2012) Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. Biochim Biophys Acta 1818: 458–466.
40. EisenmanHC, FrasesS, NicolaAM, RodriguesML, CasadevallA (2009) Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 155: 3860–3867.
41. RodriguesML, NakayasuES, OliveiraDL, NimrichterL, NosanchukJD, et al. (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7: 58–67.
42. OliveiraDL, Freire-de-LimaCG, NosanchukJD, CasadevallA, RodriguesML, et al. (2010) Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 78: 1601–1609.
43. QureshiA, WrayD, RhomeR, BarryW, Del PoetaM (2012) Detection of antibody against fungal glucosylceramide in immunocompromised patients: a potential new diagnostic approach for cryptococcosis. Mycopathologia 173: 419–425.
44. RodriguesML, ShiL, Barreto-BergterE, NimrichterL, FariasSE, et al. (2007) Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol 14: 1372–1376.
45. NimrichterL, Barreto-BergterE, Mendonca-FilhoRR, KneippLF, MazziMT, et al. (2004) A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes Infect 6: 657–665.
46. TavaresPM, ThevissenK, CammueBP, FrancoisIE, Barreto-BergterE, et al. (2008) In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother 52: 4522–4525.
47. ThevissenK, WarneckeDC, FrancoisIE, LeipeltM, HeinzE, et al. (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279: 3900–3905.
48. AertsAM, FrancoisIE, CammueBP, ThevissenK (2008) The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65: 2069–2079.
49. ThevissenK, de Mello TavaresP, XuD, BlankenshipJ, VandenboschD, et al. (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84: 166–180.
50. ThevissenK, KristensenHH, ThommaBP, CammueBP, FrancoisIE (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12: 966–971.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human and Plant Fungal Pathogens: The Role of Secondary Metabolites
- Lyme Disease: Call for a “Manhattan Project” to Combat the Epidemic
- Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells
- Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen f.sp.