Variable Suites of Non-effector Genes Are Co-regulated in the Type III Secretion Virulence Regulon across the Phylogeny
Pseudomonas syringae is a phylogenetically diverse species of Gram-negative bacterial plant pathogens responsible for crop diseases around the world. The HrpL sigma factor drives expression of the major P. syringae virulence regulon. HrpL controls expression of the genes encoding the structural and functional components of the type III secretion system (T3SS) and the type three secreted effector proteins (T3E) that are collectively essential for virulence. HrpL also regulates expression of an under-explored suite of non-type III effector genes (non-T3E), including toxin production systems and operons not previously associated with virulence. We implemented and refined genome-wide transcriptional analysis methods using cDNA-derived high-throughput sequencing (RNA-seq) data to characterize the HrpL regulon from six isolates of P. syringae spanning the diversity of the species. Our transcriptomes, mapped onto both complete and draft genomes, significantly extend earlier studies. We confirmed HrpL-regulation for a majority of previously defined T3E genes in these six strains. We identified two new T3E families from P. syringae pv. oryzae 1_6, a strain within the relatively underexplored phylogenetic Multi-Locus Sequence Typing (MLST) group IV. The HrpL regulons varied among strains in gene number and content across both their T3E and non-T3E gene suites. Strains within MLST group II consistently express the lowest number of HrpL-regulated genes. We identified events leading to recruitment into, and loss from, the HrpL regulon. These included gene gain and loss, and loss of HrpL regulation caused by group-specific cis element mutations in otherwise conserved genes. Novel non-T3E HrpL-regulated genes include an operon that we show is required for full virulence of P. syringae pv. phaseolicola 1448A on French bean. We highlight the power of integrating genomic, transcriptomic, and phylogenetic information to drive concise functional experimentation and to derive better insight into the evolution of virulence across an evolutionarily diverse pathogen species.
Vyšlo v časopise:
Variable Suites of Non-effector Genes Are Co-regulated in the Type III Secretion Virulence Regulon across the Phylogeny. PLoS Pathog 10(1): e32767. doi:10.1371/journal.ppat.1003807
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003807
Souhrn
Pseudomonas syringae is a phylogenetically diverse species of Gram-negative bacterial plant pathogens responsible for crop diseases around the world. The HrpL sigma factor drives expression of the major P. syringae virulence regulon. HrpL controls expression of the genes encoding the structural and functional components of the type III secretion system (T3SS) and the type three secreted effector proteins (T3E) that are collectively essential for virulence. HrpL also regulates expression of an under-explored suite of non-type III effector genes (non-T3E), including toxin production systems and operons not previously associated with virulence. We implemented and refined genome-wide transcriptional analysis methods using cDNA-derived high-throughput sequencing (RNA-seq) data to characterize the HrpL regulon from six isolates of P. syringae spanning the diversity of the species. Our transcriptomes, mapped onto both complete and draft genomes, significantly extend earlier studies. We confirmed HrpL-regulation for a majority of previously defined T3E genes in these six strains. We identified two new T3E families from P. syringae pv. oryzae 1_6, a strain within the relatively underexplored phylogenetic Multi-Locus Sequence Typing (MLST) group IV. The HrpL regulons varied among strains in gene number and content across both their T3E and non-T3E gene suites. Strains within MLST group II consistently express the lowest number of HrpL-regulated genes. We identified events leading to recruitment into, and loss from, the HrpL regulon. These included gene gain and loss, and loss of HrpL regulation caused by group-specific cis element mutations in otherwise conserved genes. Novel non-T3E HrpL-regulated genes include an operon that we show is required for full virulence of P. syringae pv. phaseolicola 1448A on French bean. We highlight the power of integrating genomic, transcriptomic, and phylogenetic information to drive concise functional experimentation and to derive better insight into the evolution of virulence across an evolutionarily diverse pathogen species.
Zdroje
1. TroisfontainesP, CornelisGR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20: 326–339.
2. NaumM, BrownEW, Mason-GamerRJ (2009) Phylogenetic evidence for extensive horizontal gene transfer of type III secretion system genes among enterobacterial plant pathogens. Microbiology 155: 3187–3199.
3. BaltrusDA, NishimuraMT, RomanchukA, ChangJH, MukhtarMS, et al. (2011) Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLoS Pathog 7: e1002132.
4. HiranoSS, UpperCD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64: 624–653.
5. MorrisCE, MonteilCL, BergeO (2013) The Life History of Pseudomonas syringae: Linking Agriculture to Earth System Processes. Annu Rev Phytopathol 51: 85–104.
6. O'BrienHE, DesveauxD, GuttmanDS (2011) Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol 14: 24–30.
7. AlfanoJR, CharkowskiAO, DengWL, BadelJL, Petnicki-OcwiejaT, et al. (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97: 4856–4861.
8. StavrinidesJ, McCannHC, GuttmanDS (2008) Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol 10: 285–292.
9. RohmerL, GuttmanDS, DanglJL (2004) Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 167: 1341–1360.
10. LindebergM, MyersCR, CollmerA, SchneiderDJ (2008) Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21: 685–700.
11. JonesJD, DanglJL (2006) The plant immune system. Nature 444: 323–329.
12. XiaoY, HeuS, YiJ, LuY, HutchesonSW (1994) Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 176: 1025–1036.
13. TangX, XiaoY, ZhouJM (2006) Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 19: 1159–1166.
14. XiaoY, HutchesonSW (1994) A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 176: 3089–3091.
15. FoutsDE, AbramovitchRB, AlfanoJR, BaldoAM, BuellCR, et al. (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A 99: 2275–2280.
16. LanL, DengX, ZhouJ, TangX (2006) Genome-wide gene expression analysis of Pseudomonas syringae pv. tomato DC3000 reveals overlapping and distinct pathways regulated by hrpL and hrpRS. Mol Plant Microbe Interact 19: 976–987.
17. FerreiraAO, MyersCR, GordonJS, MartinGB, VencatoM, et al. (2006) Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis clement, and identifies novel coregulated genes. Mol Plant Microbe Interact 19: 1167–1179.
18. VencatoM, TianF, AlfanoJR, BuellCR, CartinhourS, et al. (2006) Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact 19: 1193–1206.
19. ChangJH, UrbachJM, LawTF, ArnoldLW, HuA, et al. (2005) A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102: 2549–2554.
20. McNallyRR, TothIK, CockPJ, PritchardL, HedleyPE, et al. (2012) Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. Mol Plant Pathol 13: 160–173.
21. OcchialiniA, CunnacS, ReymondN, GeninS, BoucherC (2005) Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Mol Plant Microbe Interact 18: 938–949.
22. NoelL, ThiemeF, NennstielD, BonasU (2001) cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 41: 1271–1281.
23. SchmidtkeC, FindeissS, SharmaCM, KuhfussJ, HoffmannS, et al. (2012) Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 40: 2020–2031.
24. HoganCS, MoleBM, GrantSR, WillisDK, CharkowskiAO (2013) The Type III Secreted Effector DspE Is Required Early in Solanum tuberosum Leaf Infection by Pectobacterium carotovorum to Cause Cell Death, and Requires Wx(3-6)D/E Motifs. PLoS One 8: e65534.
25. SreedharanA, Penaloza-VazquezA, KunkelBN, BenderCL (2006) CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 19: 768–779.
26. UllrichM, Penaloza-VazquezA, BaileyAM, BenderCL (1995) A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 177: 6160–6169.
27. HwangMS, MorganRL, SarkarSF, WangPW, GuttmanDS (2005) Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 71: 5182–5191.
28. BullCT, ManceauC, LydonJ, KongH, VinatzerBA, et al. (2010) Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999. Syst Appl Microbiol 33: 105–115.
29. JoardarV, LindebergM, JacksonRW, SelengutJ, DodsonR, et al. (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187: 6488–6498.
30. BuellCR, JoardarV, LindebergM, SelengutJ, PaulsenIT, et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100: 10181–10186.
31. FeilH, FeilWS, ChainP, LarimerF, DiBartoloG, et al. (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102: 11064–11069.
32. ButlerMI, StockwellPA, BlackMA, DayRC, LamontIL, et al. (2013) Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One 8: e57464.
33. O'BrienHE, ThakurS, GongY, FungP, ZhangJ, et al. (2012) Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol 12: 141.
34. GreenS, StudholmeDJ, LaueBE, DoratiF, LovellH, et al. (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 5: e10224.
35. SarrisPF, TrantasEA, BaltrusDA, BullCT, WechterWP, et al. (2013) Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS One 8: e59366.
36. ReinhardtJA, BaltrusDA, NishimuraMT, JeckWR, JonesCD, et al. (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19: 294–305.
37. CaiR, LewisJ, YanS, LiuH, ClarkeCR, et al. (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7: e1002130.
38. StudholmeDJ, IbanezSG, MacLeanD, DanglJL, ChangJH, et al. (2009) A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 10: 395.
39. McCannHC, RikkerinkEHA, BertelsF, FiersM, LuA, et al. (2013) Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathog 9: e1003503.
40. ClarkeCR, CaiR, StudholmeDJ, GuttmanDS, VinatzerBA (2010) Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc Locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 23: 198–210.
41. FiliatraultMJ, StodghillPV, MyersCR, BronsteinPA, ButcherBG, et al. (2011) Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One 6: e29335.
42. FiliatraultMJ, StodghillPV, BronsteinPA, MollS, LindebergM, et al. (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192: 2359–2372.
43. GreenwaldJW, GreenwaldCJ, PhilmusBJ, BegleyTP, GrossDC (2012) RNA-seq analysis reveals that an ECF sigma factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. PLoS One 7: e34804.
44. HockettKL, BurchAY, LindowSE (2013) Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS One 8: e59850.
45. CumbieJS, KimbrelJA, DiY, SchaferDW, WilhelmLJ, et al. (2011) GENE-counter: a computational pipeline for the analysis of RNA-Seq data for gene expression differences. PLoS One 6: e25279.
46. BushleyKE, RajaR, JaiswalP, CumbieJS, NonogakiM, et al. (2013) The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9: e1003496.
47. FilichkinSA, MocklerTC (2012) Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol Direct 7: 20.
48. HuynhTV, DahlbeckD, StaskawiczBJ (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374–1377.
49. RobinsonMD, McCarthyDJ, SmythGK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
50. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
51. GreeneW (2008) Functional forms for the negative binomial model for count data. Economics Letters 99: 585–590.
52. GreeneW (2005) Functional Form and Heterogeneity in Models for Count Data. Foundations and Trends® in Econometrics 1: 113–218.
53. DiY, SchaferD, CumbieJ, ChangJ (2011) The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq. Stat Appl Genet Mol Biol 10 Article 24.
54. KvitkoBH, ParkDH, VelasquezAC, WeiCF, RussellAB, et al. (2009) Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog 5: e1000388.
55. MukaiharaT, TamuraN (2009) Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology 155: 2235–2244.
56. GuttmanDS, VinatzerBA, SarkarSF, RanallMV, KettlerG, et al. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295: 1722–1726.
57. CunnacS, ChakravarthyS, KvitkoBH, RussellAB, MartinGB, et al. (2011) Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci U S A 108: 2975–2980.
58. LindebergM, StavrinidesJ, ChangJH, AlfanoJR, CollmerA, et al. (2005) Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant Microbe Interact 18: 275–282.
59. LindowSE (1985) Ecology of Pseudomonas syringae relevant to the field use of Ice - deletion mutants constructed in vitro for plant frost control. Engineered Organisms in the Environment: Scientific Issues 23–35.
60. MohrTJ, LiuH, YanS, MorrisCE, CastilloJA, et al. (2008) Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190: 2858–2870.
61. MorrisCE, SandsDC, VannesteJL, MontarryJ, OakleyB, et al. (2010) Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. MBio 1: e00107–10.
62. MorrisCE, SandsDC, VinatzerBA, GlauxC, GuilbaudC, et al. (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2: 321–334.
63. BaltrusDA, YourstoneS, LindA, GuilbaudC, SandsDC, et al. (2013) Draft Genomes for a Phylogenetically Diverse Suite of Pseudomonas syringae Isolates From Multiple Source Populations. J Bacteriol in press.
64. SchechterLM, VencatoM, JordanKL, SchneiderSE, SchneiderDJ, et al. (2006) Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol Plant Microbe Interact 19: 1180–1192.
65. KeenNT, TamakiS, KobayashiD, GerholdD, StaytonM, et al. (1990) Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant Microbe Interact 3: 112–121.
66. KobayashiDY, TamakiSJ, KeenNT (1989) Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci U S A 86: 157–161.
67. KobayashiDY, TamakiSJ, KeenNT (1990) Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 3: 94–102.
68. LoperJE, HassanKA, MavrodiDV, DavisEW2nd, LimCK, et al. (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8: e1002784.
69. StavrinidesJ, MaW, GuttmanDS (2006) Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2: e104.
70. GaziAD, SarrisPF, FadouloglouVE, CharovaSN, MathioudakisN, et al. (2012) Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 12: 188.
71. BadelJL, ShimizuR, OhHS, CollmerA (2006) A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant Microbe Interact 19: 99–111.
72. MachoAP, ZumaqueroA, Gonzalez-PlazaJJ, Ortiz-MartinI, RufianJS, et al. (2012) Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. PLoS One 7: e35871.
73. MelottoM, UnderwoodW, KoczanJ, NomuraK, HeSY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980.
74. GlassNL, KosugeT (1986) Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166: 598–603.
75. DenanceN, Sanchez-ValletA, GoffnerD, MolinaA (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4: 155.
76. OhCS, KimJF, BeerSV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infectiondouble dagger. Mol Plant Pathol 6: 125–138.
77. BeckBJ, DownsDM (1998) The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 180: 885–891.
78. SkovranE, LauhonCT, DownsDM (2004) Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe-S cluster metabolism in Salmonella enterica. J Bacteriol 186: 7626–7634.
79. BoydJM, EndrizziJA, HamiltonTL, ChristophersonMR, MulderDW, et al. (2011) FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins. J Bacteriol 193: 887–895.
80. SilbyMW, Cerdeno-TarragaAM, VernikosGS, GiddensSR, JacksonRW, et al. (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10: R51.
81. BurnensAP, StanleyJ, SackR, HunzikerP, BrodardI, et al. (1997) The flagellin N-methylase gene fliB and an adjacent serovar-specific IS200 element in Salmonella typhimurium. Microbiology 143(Pt 5): 1539–1547.
82. OldenburgM, KrugerA, FerstlR, KaufmannA, NeesG, et al. (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337: 1111–1115.
83. ZipfelC, RobatzekS, NavarroL, OakeleyEJ, JonesJD, et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767.
84. HayashiF, SmithKD, OzinskyA, HawnTR, YiEC, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103.
85. MurilloJ, ShenH, GerholdD, SharmaA, CookseyDA, et al. (1994) Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 31: 275–287.
86. AtkinsonMM, MidlandSL, SimsJJ, KeenNT (1996) Syringolide 1 Triggers Ca2+ Influx, K+ Efflux, and Extracellular Alkalization in Soybean Cells Carrying the Disease-Resistance Gene Rpg4. Plant Physiol 112: 297–302.
87. YucelI, MidlandSL, SimsJJ, KeenNT (1994) Class I and class II avrD alleles direct the production of different products in gram-negative bacteria. Mol Plant Microbe Interact 7: 148–150.
88. GustB, ChandraG, JakimowiczD, YuqingT, BrutonCJ, et al. (2004) Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 54: 107–128.
89. EarlAM, DesjardinsCA, FitzgeraldMG, ArachchiHM, ZengQ, et al. (2011) High quality draft genome sequence of Segniliparus rugosus CDC 945(T) = (ATCC BAA-974(T)). Stand Genomic Sci 5: 389–397.
90. WernischL, KendallSL, SonejiS, WietzorrekA, ParishT, et al. (2003) Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19: 53–61.
91. MarcoML, LegacJ, LindowSE (2005) Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 7: 1379–1391.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human and Plant Fungal Pathogens: The Role of Secondary Metabolites
- Lyme Disease: Call for a “Manhattan Project” to Combat the Epidemic
- Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells
- Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen f.sp.