#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Male-Killing Induces Sex-Specific Cell Death via Host Apoptotic Pathway


Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype.


Vyšlo v časopise: Male-Killing Induces Sex-Specific Cell Death via Host Apoptotic Pathway. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003956
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003956

Souhrn

Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype.


Zdroje

1. Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. New York, NY, USA: Interscience Publishers. 909 p.

2. Bourtzis K, Miller TA (2003) Insect Symbiosis. Boca Raton, FL: CRC Press. 156 p.

3. MoranNA, McCutcheonJP, NakabachiA (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 165–190 doi:10.1146/annurev.genet.41.110306.130119

4. OhkumaM (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61: 1–9 doi:10.1007/s00253-002-1189-z

5. OliverKM, DegnanPH, BurkeGR, MoranNA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55: 247–266 doi:10.1146/annurev-ento-112408-085305

6. O'Neill SL, Hoffmann AA, Werren JH (1997) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford, UK: Oxford University Press. 214 p.

7. Zchori-FeinE, PerlmanSJ, KellySE, KatzirN, HunterMS (2004) Characterization of a “Bacteroidetes” symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of “Candidatus Cardinium hertigii.”. Int J Syst Evol Microbiol 54: 961–968 doi:10.1099/ijs.0.02957-0

8. WerrenJH, BaldoL, ClarkME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751 doi:10.1038/nrmicro1969

9. WhitcombRF (1981) The biology of spiroplasmas. Ann Rev Entomol 26: 397–425 doi:10.1146/annurev.en.26.010181.002145

10. HurstGDD, JigginsFM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6: 329–336 doi:10.3201/eid0604.000402

11. Hurst GDD, Jiggins FM, Majerus MEN (2003) Inherited Microorganisms That Selectively Kill Male Hosts: The Hidden Players of Insect Evolution? Insect Symbiosis. Boca Raton, FL: CRC Press. pp. 177–197.

12. WilliamsonDL, SakaguchiB, HackettKJ, WhitcombRF, TullyJG, et al. (1999) Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. Int J Syst Bacteriol 49: 611–618 doi:10.1099/00207713-49-2-611

13. HaselkornTS (2010) The Spiroplasma heritable bacterial endosymbiont of Drosophila. Fly (Austin) 4: 80–87 doi:10.4161/fly.4.1.10883

14. AnbutsuH, FukatsuT (2011) Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep 3: 144–153 doi:10.1111/j.1758-2229.2010.00240.x

15. SerbusLR, Casper-LindleyC, LandmannF, SullivanW (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42: 683–707 doi:10.1146/annurev.genet.41.110306.130354

16. AnbutsuH, FukatsuT (2003) Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster. Appl Environ Microbiol 69: 1428–1434 doi:10.1128/AEM.69.3.1428-1434.2003

17. AnbutsuH, FukatsuT (2006) Tissue-specific infection dynamics of male-killing and nonmale-killing spiroplasmas in Drosophila melanogaster. FEMS Microbiol Ecol 57: 40–46 doi:10.1111/j.1574-6941.2006.00087.x

18. AnbutsuH, GotoS, FukatsuT (2008) High and low temperatures differently affect infection density and vertical transmission of male-killing Spiroplasma symbionts in Drosophila hosts. Appl Environ Microbiol 74: 6053–6059 doi:10.1128/AEM.01503-08

19. HurstGDD, AnbutsuH, KutsukakeM, FukatsuT (2003) Hidden from the host: Spiroplasma bacteria infecting Drosophila do not cause an immune response, but are suppressed by ectopic immune activation. Insect Mol Biol 12: 93–97 doi:10.1046/j.1365-2583.2003.00380.x

20. AnbutsuH, FukatsuT (2010) Evasion, suppression and tolerance of Drosophila innate immunity by a male-killing Spiroplasma endosymbiont. Insect Mol Biol 19: 481–488 doi:10.1111/j.1365-2583.2010.01008.x

21. HerrenJK, LemaitreB (2011) Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 13: 1385–1396 doi:10.1111/j.1462-5822.2011.01627.x

22. NikiY (1988) Ultrastructural study of the sex ratio organism (SRO) transmission into oocytes during oogenesis in Drosophila melanogaster. Jpn J Genet 63: 11–21 doi:10.1266/jjg.63.11

23. HerrenJK, ParedesJC, SchüpferF, LemaitreB (2013) Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery. MBio 4: e00532–12 doi:10.1128/mBio.00532-12

24. VenetiZ, BentleyJK, KoanaT, BraigHR, HurstGDD (2005) A functional dosage compensation complex required for male killing in Drosophila. Science 307: 1461–1463 doi:10.1126/science.1107182

25. BentleyJK, VenetiZ, HeratyJ, HurstGDD (2007) The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biol 5: 9 doi:10.1186/1741-7007-5-9

26. KageyamaD, AnbutsuH, ShimadaM, FukatsuT (2007) Spiroplasma infection causes either early or late male killing in Drosophila, depending on maternal host age. Naturwissenschaften 94: 333–337 doi:10.1007/s00114-006-0195-x

27. KageyamaD, AnbutsuH, ShimadaM, FukatsuT (2009) Effects of host genotype against the expression of Spiroplasma-induced male killing in Drosophila melanogaster. Heredity (Edinb) 102: 475–482 doi:10.1038/hdy.2009.14

28. CounceSJ, PoulsonDF (1962) Developmental effects of the sex-ratio agent in embryos of Drosophila willistoni. J Exp Zool 151: 17–31 doi:10.1002/jez.1401510103

29. Tsuchiyama-OmuraS, SakaguchiB, KogaK, PoulsonDF (1988) Morphological features of embryogenesis in Drosophila melanogaster infected with a male-killing Spiroplasma. Zoolog Sci 5: 375–383.

30. KurodaY, ShimadaY, SakaguchiB, OishiK (1992) Effects of sex-ratio (SR)-Spiroplasma infection on Drosophila primary embryonic cultured cells and on embryogenesis. Zoolog Sci 9: 283–291.

31. TsuchiyamaS, SakaguchiB, OishiK (1978) Analysis of gynandromorph survivals in Drosophila melanogaster infected with the male-killing SR organisms. Genetics 89: 711–721.

32. KoanaT, MiyakeT (1983) Effects of the sex ratio organism on in vitro differentiation of Drosophila embryonic cells. Genetics 104: 113–122.

33. AbramsJM, WhiteK, FesslerLI, StellerH (1993) Programmed cell death during Drosophila embryogenesis. Development 117: 29–43.

34. QuinnLM, DorstynL, MillsK, ColussiPA, ChenP, et al. (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275: 40416–40424 doi:10.1074/jbc.M002935200

35. ChewSK, AkdemirF, ChenP, LuW-J, MillsK, et al. (2004) The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 7: 897–907 doi:10.1016/j.devcel.2004.09.016

36. DaishTJ, MillsK, KumarS (2004) Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 7: 909–915 doi:10.1016/j.devcel.2004.09.018

37. XuD, LiY, ArcaroM, LackeyM, BergmannA (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132: 2125–2134 doi:10.1242/dev.01790

38. WaldhuberM, EmotoK, PetritschC (2005) The Drosophila caspase DRONC is required for metamorphosis and cell death in response to irradiation and developmental signals. Mech Dev 122: 914–927 doi:10.1016/j.mod.2005.04.003

39. FanY, BergmannA (2010) The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17: 534–539 doi:10.1038/cdd.2009.185

40. WhiteK, GretherME, AbramsJM, YoungL, FarrellK, et al. (1994) Genetic control of programmed cell death in Drosophila. Science 264: 677–683 doi:10.1126/science.8171319

41. GretherME, AbramsJM, AgapiteJ, WhiteK, StellerH (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9: 1694–1708 doi:10.1101/gad.9.14.1694

42. ChenP, NordstromW, GishB, AbramsJM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10: 1773–1782 doi:10.1101/gad.10.14.1773

43. SalvesenGS, AbramsJM (2004) Caspase activation - stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23: 2774–2784 doi:10.1038/sj.onc.1207522

44. StellerH (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15: 1132–1138 doi:10.1038/cdd.2008.50

45. XuD, WoodfieldSE, LeeTV, FanY, AntonioC, et al. (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3: 78–90 doi:10.4161/fly.3.1.7800

46. MiuraM (2012) Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol 4: pii: a008664 doi:10.1101/cshperspect.a008664

47. LinN, ZhangC, PangJ, ZhouL (2009) By design or by chance: cell death during Drosophila embryogenesis. Apoptosis 14: 935–942 doi:10.1007/s10495-009-0360-8

48. LohmannI, McGinnisN, BodmerM, McGinnisW (2002) The Drosophila Hox gene Deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110: 457–466 doi:10.1016/S0092-8674(02)00871-1

49. PazderaTM, JanardhanP, MindenJS (1998) Patterned epidermal cell death in wild-type and segment polarity mutant Drosophila embryos. Development 125: 3427–3436.

50. KnustE, BossingerO (2002) Composition and formation of intercellular junctions in epithelial cells. Science 298: 1955–1959 doi:10.1126/science.1072161

51. SuzukiA, OhnoS (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119: 979–987 doi:10.1242/jcs.02898

52. RobinowS, WhiteK (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev Biol 126: 294–303 doi:10.1016/0012-1606(88)90139-X

53. RobinowS, WhiteK (1991) Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J Neurobiol 22: 443–461 doi:10.1002/neu.480220503

54. IsshikiT, PearsonB, HolbrookS, DoeCQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106: 511–521 doi:10.1016/S0092-8674(01)00465-2

55. Ashburner M, Golic KG, Hawley RS (2005) 27 Mosaics. Drosophila: A Laboratory Handbook. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. pp. 961–1006.

56. BouchonD, RigaudT, JuchaultP (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc Biol Sci 265: 1081–1090 doi:10.1098/rspb.1998.0402

57. KageyamaD, OhnoS, HoshizakiS, IshikawaY (2003) Sexual mosaics induced by tetracycline treatment in the Wolbachia-infected adzuki bean borer, Ostrinia scapulalis. Genome 46: 983–989 doi:10.1139/g03-082

58. NegriI, PellecchiaM, MazzoglioPJ, PatettaA, AlmaA (2006) Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proc Biol Sci 273: 2409–2416 doi:10.1098/rspb.2006.3592

59. NaritaS, KageyamaD, NomuraM, FukatsuT (2007) Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73: 4332–4341 doi:10.1128/AEM.00145-07

60. TulgetskeGM, StouthamerR (2012) Characterization of intersex production in Trichogramma kaykai infected with parthenogenesis-inducing Wolbachia. Naturwissenschaften 99: 143–152 doi:10.1007/s00114-011-0880-2

61. ThompsonJ, GrahamP, SchedlP, PulakR (2004) Sex-specific GFP-expression in Drosophila embryos and sorting by COPAS flow cytometry technique. 45th ADRC Available: http://www.unionbio.com/publications/detail.aspx?id=143.

62. GotoS, AnbutsuH, FukatsuT (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72: 4805–4810 doi:10.1128/AEM.00416-06

63. PoolJE, WongA, AquadroCF (2006) Finding of male-killing Spiroplasma infecting Drosophila melanogaster in Africa implies transatlantic migration of this endosymbiont. Heredity (Edinb) 97: 27–32 doi:10.1038/sj.hdy.6800830

64. BoppD, BellLR, ClineTW, SchedlP (1991) Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev 5: 403–415 doi:10.1101/gad.5.3.403

65. SchüttC, NöthigerR (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127: 667–677.

66. KosmanD, SmallS, ReinitzJ (1998) Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Dev Gene Evol 208: 290–294 doi:10.1007/s004270050184

67. WyllieAH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556 doi:10.1038/284555a0

68. AramaE, StellerH (2006) Detection of apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and acridine orange in Drosophila embryos and adult male gonads. Nat Protoc 1: 1725–1731 doi:10.1038/nprot.2006.235

69. KrieserRJ, MooreFE, DresnekD, PellockBJ, PatelR, et al. (2007) The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development 134: 2407–2414 doi:10.1242/dev.02860

70. PauG, FuchsF, SklyarO, BoutrosM, HuberW (2010) EBImage–an R package for image processing with applications to cellular phenotypes. Bioinformatics 26: 979–981 doi:10.1093/bioinformatics/btq046

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#