Viral Enhancer Mimicry of Host Innate-Immune Promoters
article has not abstract
Vyšlo v časopise:
Viral Enhancer Mimicry of Host Innate-Immune Promoters. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003804
Kategorie:
Opinion
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003804
Souhrn
article has not abstract
Zdroje
1. TabetaK, GeorgelP, JanssenE, DuX, HoebeK, et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101: 3516–3521.
2. KumarH, KawaiT, AkiraS (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30: 16–34.
3. KawaiT, AkiraS (2006) TLR signaling. Cell Death Differ 13: 816–825.
4. ZhongB, TienP, ShuHB (2006) Innate immune responses: crosstalk of signaling and regulation of gene transcription. Virology 352: 14–21.
5. O'NeillLAJ, GolenbockD, BowieAG (2013) The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 13: 453–460.
6. EldeNC, MalikHS (2009) The evolutionary conundrum of pathogen mimicry. Nat Rev Micro 7: 787–797.
7. WuB, HurS (2013) Viral counterattack against the host innate immune system. Cell Res 23: 735–736.
8. DraymanN, GlickY, Ben-nun-ShaulO, ZerH, ZlotnickA, et al. (2013) Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 14: 63–73.
9. SlobedmanB, BarryPA, SpencerJV, AvdicS, AbendrothA (2009) Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 83: 9618–9629.
10. AlcamiA (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3: 36–50.
11. Engel P, Angulo A (2012) Viral immunomodulatory proteins: usurping host genes as a survival strategy. In: López-Larrea C, editors. Self and nonself. Springer US. pp.256–276.
12. HonessRW, RoizmanB (1974) Regulation of herpesvirus macromolecular synthesis I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14: 8–19.
13. GhazalP, GonzalezAJC, Garcia-RamirezJJ, KurzS, AnguloA (2000) Viruses: hostages to the cell. Virology 275: 233–237.
14. GhazalP, Garcia-RamirezJJ, GonzalezAJC, KurzS, AnguloA (2000) Principles of homeostasis in governing virus activation and latency. Immunol Res 21: 219–223.
15. BryneJC, ValenE, TangMHE, MarstrandT, WintherO, et al. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucl Acids Res 36: D102–D106.
16. BoshartM, WeberF, JahnG, Dorsch-HaslerK, FleckensteinB, et al. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521–530.
17. HarlanSM, ReiterRS, SigmundCD, LinJL-C, LinJJ-C (2008) Requirement of TCTG(G/C) direct repeats and overlapping GATA site for maintaining the cardiac-specific expression of cardiac troponin T in developing and adult mice. Anat Rec 291: 1574–1586.
18. GhazalP, LubonH, Reynolds-KohlerC, HennighausenL, NelsonJA (1990) Interactions between cellular regulatory proteins and a unique sequence region in the human cytomegalovirus major immediate-early promoter. Virology 174: 18–25.
19. LeeW, HaslingerA, KarinM, TjianR (1987) Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325: 368–372.
20. KroppKA, SimonCO, FinkA, RenzahoA, KühnapfelB, et al. (2009) Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. J Gen Virol 90: 2395–2401.
21. HaslingerA, KarinM (1985) Upstream promoter element of the human metallothionein-IIA gene can act like an enhancer element. Proc Natl Acad Sci U S A 82: 8572.
22. UchiumiF, MiyazakiS, TanumaSi (2011) The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes. Cell Mol Life Sci 68: 2039–2051.
23. KimuraA, IsraëlA, Le BailO, KourilskyP (1986) Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I gene expression. Cell 44: 261–272.
24. HonkakoskiP, MooreR, WashburnKA, NegishiM (1998) Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 53: 597–601.
25. WeberF, de VilliersJ, SchaffnerW (1984) An SV40 “enhancer trap” incorporates exogenous enhancers or generates enhancers from its own sequences. Cell 36: 983–992.
26. HerrW, ClarkeJ (1986) The SV40 enhancer is composed of multiple functional elements that can compensate for one another. Cell 45: 461–470.
27. NakamichiK, KishidaS, TanakaK, SuganumaA, SanoY, et al. (2013) Sequential changes in the non-coding control region sequences of JC polyomaviruses from the cerebrospinal fluid of patients with progressive multifocal leukoencephalopathy. Arch Virol 158: 639–650.
28. MarkowitzRB, TolbertS, DynanWS (1990) Promoter evolution in BK virus: functional elements are created at sequence junctions. J Virol 64: 2411–2415.
29. SchmidtD, WilsonMD, BallesterB, SchwaliePC, BrownGD, et al. (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328: 1036–1040.
30. HareEE, PetersonBK, IyerVN, MeierR, EisenMB (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4: e1000106.
31. ArnostiDN, KulkarniMM (2005) Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J Cell Biochem 94: 890–898.
32. KuoD, LiconK, BandyopadhyayS, ChuangR, LuoC, et al. (2010) Coevolution within a transcriptional network by compensatory trans and cis mutations. PCR Methods Appl 20: 1672–1678.
33. MacArthurS, BrookfieldJFY (2004) Expected rates and modes of evolution of enhancer sequences. Mol Biol Evol 21: 1064–1073.
34. VincesMD, LegendreM, CaldaraM, HagiharaM, VerstrepenKJ (2009) Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324: 1213–1216.
35. ArbizaL, GronauI, AksoyBA, HubiszMJ, GulkoB, et al. (2013) Genome-wide inference of natural selection on human transcription factor binding sites. Nat Genet 45: 723–729.
36. WeirauchMT, HughesTR (2010) Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet 26: 66–74.
37. StinskiMF, IsomuraH (2008) Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 197: 223–231.
38. AnguloA, MesserleM, KoszinowskiUH, GhazalP (1998) Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 72: 8502–8509.
39. Mella-AlvaradoV, GautierA, Le GacF, LareyreJJ (2013) Tissue and cell-specific transcriptional activity of the human cytomegalovirus immediate early gene promoter (UL123) in zebrafish. Gene Expr Patterns 13: 91–103.
40. KoedoodM, FichtelA, MeierP, MitchellPJ (1995) Human cytomegalovirus (HCMV) immediate-early enhancer/promoter specificity during embryogenesis defines target tissues of congenital HCMV infection. J Virol 69: 2194–2207.
41. BaskarJF, SmithPP, CimentGS, HoffmannS, TuckerC, et al. (1996) Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J Virol 70: 3215–3226.
42. VaquerizasJM, KummerfeldSK, TeichmannSA, LuscombeNM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10: 252–263.
43. NovereNL, HuckaM, MiH, MoodieS, SchreiberF, et al. (2009) The systems biology graphical notation. Nat Biotech 27: 735–741.
44. WattersonS, MarshallS, GhazalP (2008) Logic models of pathway biology. Drug Discov Today 13: 447–456.
45. WattersonS, GhazalP (2010) Use of logic theory in understanding regulatory pathway signaling in response to infection. Future Microbiol 5: 163–176.
46. Yadaf A, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Exploring possible mimicry of host immune genes by viruses. Available: http://dx.doi.org/10.6084/m9.figshare.703130. Accessed 5 June 2013.
47. Ming-Yuan Huang J, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Transcriptional regulation of viral and innate immune genes - a comparison of IFNβ and HCMV MIE genes. Available: http://dx.doi.org/10.6084/m9.figshare.703089. Accessed 5 June 2013.
48. Ba Abdullah MM, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Logic based mapping of the promoter enhancer regions of HPV16 and Interferon-γ: a search for similarity. Available: http://dx.doi.org/10.6084/m9.figshare.753326. Accessed 5 June 2013.
49. MacDonald D, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Common transcription factors between Hepatitis B virus (HBV) and Interleukin-8 (IL8). Available: http://dx.doi.org/10.6084/m9.figshare.776903. Accessed 5 June 2013.
50. Mallikarjun V, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Investigating a noval kind of molecular mimicry using pathway mapping based approached, in particular for IFNγ, SV40 and Adenovirus. Available: http://dx.doi.org/10.6084/m9.figshare.748790. Accessed 5 June 2013.
51. Zakirova Z, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Mapping innate immune host and viral gene interactions in monoctyte/macrophages, in particular for IL1β and the LTR region of HIV-1. Available: http://dx.doi.org/10.6084/m9.figshare.741713. Accessed 5 June 2013.
52. Weber J, Kropp KA, Mazein A, Watterson S, Roy D, et al. (2013) Examining common transcription factors and functional sequences that might indicate viral mimicry between the activation of Human Papilloma Virus-18 proteins E6 and E7 and the immune genes IRF1 and IL12. Available: http://dx.doi.org/10.6084/m9.figshare.753078. Accessed 5 June 2013.
53. GrassoRJ, BuchananJM (1969) Synthesis of early RNA in bacteriophage T4-infected Escherichia coli B. Nature 224: 882–885.
54. LauLF, NathansD (1987) Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84: 1182–1186.
55. TakaokaA, YanaiH (2006) Interferon signalling network in innate defence. Cell Microbiol 8: 907–922.
56. BeutlerB, JiangZ, GeorgelP, CrozatK, CrokerB, et al. (2006) Genetic analysis of host resistence: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 24: 353–389.
57. FalvoJV, TsytsykovaAV, GoldfeldAE (2010) Transcriptional control of the TNF gene. Curr Dir Autoimmun 11: 27–60.
58. BauerJ, GanterU, GeigerT, JacobshagenU, HiranoT, et al. (1988) Regulation of interleukin-6 expression in cultured human blood monocytes and monocyte-derived macrophages. Blood 72: 1134–1140.
59. MarcinowskiL, LidschreiberM, WindhagerL, RiederM, BosseJB, et al. (2012) Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 8: e1002908.
60. LeeY, SohnWJ, KimDS, KwonHJ (2004) NF-KB and c-Jun-dependent regulation of human cytomegalovirus immediate-early gene enhancer/promoter in response to lipopolysaccharide and bacterial CpG-oligodeoxynucleotides in macrophage cell line RAW 264.7. Euro J Biochem 271: 1094–1105.
61. IversenAC, SteinkjerB, NilsenN, BohnhorstJ, MoenSH, et al. (2009) A proviral role for CpG in cytomegalovirus infection. J Immunol 182: 5672–5681.
62. NetterwaldJ, YangS, WangW, GhannyS, CodyM, et al. (2005) Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol 79: 5035–5046.
63. EquilsO, FaureE, ThomasL, BulutY, TrushinS, et al. (2001) Bacterial lipopolysaccharide activates HIV long terminal repeat through Toll-like receptor 4. J Immunol 166: 2342–2347.
64. ZimmermannA, TrillingM, WagnerM, WilbornM, BubicI, et al. (2005) A cytomegaloviral protein reveals a dual role for STAT2 in IFN-γ signaling and antiviral responses. J Exp Med 201: 1543–1553.
65. WarisG, SiddiquiA (2002) Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function. J Virol 76: 2721–2729.
66. GringhuisSI, van der VlistM, van den BergLM, den DunnenJ, LitjensM, et al. (2010) HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nat Immunol 11: 419–426.
67. MocarskiES (2002) Virus self-improvement through inflammation: no pain, no gain. Proc Natl Acad Sci U S A 99: 3362–3364.
68. ZhuH, CongJP, YuD, BresnahanWA, ShenkTE (2002) Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci U S A 99: 3932–3937.
69. SchroderK, HertzogPJ, RavasiT, HumeDA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–189.
70. LacazeP, RazaS, SingG, PageD, ForsterT, et al. (2009) Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling. BMC Genomics 10: 372.
71. SpeirE, YuZX, FerransVJ, HuangES, EpsteinSE (1998) Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ Res 83: 210–216.
72. FiorinoS, CursaroC, LorenziniS, LoggiE, BrodosiL, et al. (2011) The pharmacology and activity of non-steroidal anti-inflammatory drugs (NSAIDs): a review of their use as an adjuvant treatment in patients with HBV and HCV chronic hepatitis. Ital J Med 5: 82–89.
73. KoppE, GhoshS (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265: 956–959.
74. DeMerittIB, PodduturiJP, TilleyAM, NogalskiMT, YurochkoAD (2006) Prolonged activation of NF-kappaB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 346: 15–31.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 2
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Reversible Silencing of Cytomegalovirus Genomes by Type I Interferon Governs Virus Latency
- Implication of PMLIV in Both Intrinsic and Innate Immunity
- Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention
- Lundep, a Sand Fly Salivary Endonuclease Increases Parasite Survival in Neutrophils and Inhibits XIIa Contact Activation in Human Plasma