The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Vyšlo v časopise:
The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection. PLoS Pathog 10(2): e32767. doi:10.1371/journal.ppat.1003904
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003904
Souhrn
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Zdroje
1. RimoinAW, MulembakaniPM, JohnstonSC, Lloyd SmithJO, KisaluNK, et al. (2010) Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A 107: 16262–16267 doi:10.1073/pnas.1005769107
2. DamasoCR, EspositoJJ, ConditRC, MoussatchéN (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277: 439–449 doi:10.1006/viro.2000.0603
3. YangZ, ReynoldsSE, MartensCA, BrunoDP, PorcellaSF, et al. (2011) Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85: 9899–9908 doi:10.1128/JVI.05446-11
4. YangZ, BrunoDP, MartensCA, PorcellaSF, MossB (2010) Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 107: 11513–11518 doi:10.1073/pnas.1006594107
5. GuerraS, López-FernándezLA, Pascual-MontanoA, MuñozM, HarshmanK, et al. (2003) Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77: 6493–6506.
6. SatheshkumarPS, AntonLC, SanzP, MossB (2009) Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. J Virol 83: 2469–2479 doi:10.1128/JVI.01986-08
7. TealeA, CampbellS, Van BuurenN, MageeWC, WatmoughK, et al. (2009) Orthopoxviruses require a functional ubiquitin-proteasome system for productive replication. J Virol 83: 2099–2108 doi:10.1128/JVI.01753-08
8. BECKERY, JOKLIKWK (1964) MESSENGER RNA IN CELLS INFECTED WITH VACCINIA VIRUS. Proc Natl Acad Sci U S A 51: 577–585.
9. MercerJ, SnijderB, SacherR, BurkardC, BleckCKE, et al. (2012) RNAi Screening Reveals Proteasome- and Cullin3-Dependent Stages in Vaccinia Virus Infection. Cell Rep 2: 1036–1047 doi:10.1016/j.celrep.2012.09.003
10. MoserTS, JonesRG, ThompsonCB, CoyneCB, CherryS (2010) A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog 6: e1000954 doi:10.1371/journal.ppat.1000954
11. SivanG, MartinSE, MyersTG, BuehlerE, SzymczykKH, et al. (2013) Human genome-wide RNAi screen reveals a role for nuclear pore proteins in poxvirus morphogenesis. Proc Natl Acad Sci U S A doi:10.1073/pnas.1300708110
12. LuoB, CheungHW, SubramanianA, SharifniaT, OkamotoM, et al. (2008) Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 105: 20380–20385 doi:10.1073/pnas.0810485105
13. CheungHW, CowleyGS, WeirBA, BoehmJS, RusinS, et al. (2011) Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A 108: 12372–12377 doi:10.1073/pnas.1109363108
14. WhittakerSR, TheurillatJ-P, Van AllenE, WagleN, HsiaoJ, et al. (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3: 350–362 doi:10.1158/2159-8290.CD-12-0470
15. DowerK, FiloneCM, HodgesEN, BjornsonZB, RubinsKH, et al. (2012) Identification of a pyridopyrimidinone inhibitor of orthopoxviruses from a diversity-oriented synthesis library. J Virol 86: 2632–2640 doi:10.1128/JVI.05416-11
16. AshtonJM, BalysM, NeeringSJ, HassaneDC, CowleyG, et al. (2012) Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell 11: 359–372 doi:10.1016/j.stem.2012.05.024
17. DowerK, RubinsKH, HensleyLE, ConnorJH (2011) Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 91: 72–80 doi:10.1016/j.antiviral.2011.04.014
18. ParrishS, MossB (2007) Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. J Virol 81: 12973–12978 doi:10.1128/JVI.01668-07
19. ParrishS, ReschW, MossB (2007) Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci U S A 104: 2139–2144 doi:10.1073/pnas.0611685104
20. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550 doi:10.1073/pnas.0506580102
21. MendilloML, SantagataS, KoevaM, BellGW, HuR, et al. (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150: 549–562 doi:10.1016/j.cell.2012.06.031
22. GuerraS, López-FernándezLA, Pascual-MontanoA, NájeraJL, ZaballosA, et al. (2006) Host response to the attenuated poxvirus vector NYVAC: upregulation of apoptotic genes and NF-kappaB-responsive genes in infected HeLa cells. J Virol 80: 985–998 doi:10.1128/JVI.80.2.985-998.2006
23. BrumLM, LopezMC, VarelaJ-C, Baker HV, MoyerRW (2003) Microarray analysis of A549 cells infected with rabbitpox virus (RPV): a comparison of wild-type RPV and RPV deleted for the host range gene, SPI-1. Virology 315: 322–334 doi:10.1016/S0042-6822(03)00532-4
24. KowalczykA, GuzikK, SlezakK, DziedzicJ, RokitaH (2005) Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages. J Inflamm (Lond) 2: 12 doi:10.1186/1476-9255-2-12
25. PhillipsB, AbravayaK, MorimotoRI (1991) Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol 65: 5680–5692.
26. SedgerL, RamshawI, CondieA, MedveczkyJ, BraithwaiteA, et al. (1996) Vaccinia virus replication is independent of cellular HSP72 expression which is induced during virus infection. Virology 225: 423–427 doi:10.1006/viro.1996.0619
27. SedgerL, RubyJ (1994) Heat shock response to vaccinia virus infection. J Virol 68: 4685–4689.
28. TrinkleinND, MurrayJI, HartmanSJ, BotsteinD, MyersRM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15: 1254–1261 doi:10.1091/mbc.E03-10-0738
29. PageTJ, SikderD, YangL, PlutaL, WolfingerRD, et al. (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst 2: 627–639 doi:10.1039/b606129j
30. SantoroMG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59: 55–63 doi:10.1016/S0006-2952(99)00299-3
31. PIRKKALAL (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118–1131 doi:10.1096/fj00-0294rev
32. MorimotoRI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788–3796 doi:10.1101/gad.12.24.3788
33. AnckarJ, SistonenL (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80: 1089–1115 doi:10.1146/annurev-biochem-060809-095203
34. EastonDP, KanekoY, SubjeckJR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5: 276–290.
35. ShanerL, MoranoKA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12: 1–8.
36. VosMJ, HagemanJ, CarraS, KampingaHH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47: 7001–7011 doi:10.1021/bi800639z
37. DaugaardM, RohdeM, JäätteläM (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581: 3702–3710 doi:10.1016/j.febslet.2007.05.039
38. KampingaHH, HagemanJ, VosMJ, KubotaH, TanguayRM, et al. (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14: 105–111 doi:10.1007/s12192-008-0068-7
39. McMillanDR, XiaoX, ShaoL, GravesK, BenjaminIJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273: 7523–7528.
40. DaiC, WhitesellL, RogersAB, LindquistS (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130: 1005–1018 doi:10.1016/j.cell.2007.07.020
41. JollyC, UssonY, MorimotoRI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci U S A 96: 6769–6774.
42. HolmbergCI, TranSEF, ErikssonJE, SistonenL (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27: 619–627.
43. GuettoucheT, BoellmannF, LaneWS, VoellmyR (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6: 4 doi:10.1186/1471-2091-6-4
44. WesterheideSD, KawaharaTLA, OrtonK, MorimotoRI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281: 9616–9622 doi:10.1074/jbc.M512044200
45. YokotaS, KitaharaM, NagataK (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60: 2942–2948.
46. OhnishiK, TakahashiA, YokotaS, OhnishiT (2004) Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status. Int J Radiat Biol 80: 607–614 doi:10.1080/09553000412331283470
47. VoyerJ, HeikkilaJJ (2008) Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 151: 253–261 doi:10.1016/j.cbpa.2008.07.004
48. EliaG, AmiciC, RossiA, SantoroMG (1996) Modulation of prostaglandin A1-induced thermotolerance by quercetin in human leukemic cells: role of heat shock protein 70. Cancer Res 56: 210–217.
49. HosokawaN, HirayoshiK, KudoH, TakechiH, AoikeA, et al. (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12: 3490–3498.
50. NagaiN, NakaiA, NagataK (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208: 1099–1105 doi:10.1006/bbrc.1995.1447
51. YoonYJ, KimJA, ShinKD, ShinD-S, HanYM, et al. (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286: 1737–1747 doi:10.1074/jbc.M110.179440
52. SantagataS, MendilloML, TangY, SubramanianA, PerleyCC, et al. (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341: 1238303 doi:10.1126/science.1238303
53. LeuJI-J, PimkinaJ, FrankA, MurphyME, GeorgeDL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36: 15–27 doi:10.1016/j.molcel.2009.09.023
54. ShinKD, YoonYJ, KangY-R, SonK-H, KimHM, et al. (2008) KRIBB3, a novel microtubule inhibitor, induces mitotic arrest and apoptosis in human cancer cells. Biochem Pharmacol 75: 383–394 doi:10.1016/j.bcp.2007.08.027
55. ShinKD, LeeM-Y, ShinD-S, LeeS, SonK-H, et al. (2005) Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem 280: 41439–41448 doi:10.1074/jbc.M507209200
56. WangY, TrepelJB, NeckersLM, GiacconeG (2010) STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr Opin Investig Drugs 11: 1466–1476.
57. LinT-Y, BearM, DuZ, FoleyKP, YingW, et al. (2008) The novel HSP90 inhibitor STA-9090 exhibits activity against Kit-dependent and -independent malignant mast cell tumors. Exp Hematol 36: 1266–1277 doi:10.1016/j.exphem.2008.05.001
58. ChangL, MiyataY, UngPMU, BertelsenEB, McQuadeTJ, et al. (2011) Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol 18: 210–221 doi:10.1016/j.chembiol.2010.12.010
59. JohnstonSC, LinKL, ConnorJH, RuthelG, GoffA, et al. (2012) In vitro inhibition of monkeypox virus production and spread by Interferon-β. Virol J 9: 5 doi:10.1186/1743-422X-9-5
60. TeferiWM, DoddK, MaranchukR, FavisN, EvansDH (2013) A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication. J Virol 87: 4623–4641 doi:10.1128/JVI.02617-12
61. IzmailyanR, HsaoJ-C, ChungC-S, ChenC-H, HsuPW-C, et al. (2012) Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 86: 6677–6687 doi:10.1128/JVI.06860-11
62. HungJ-J, ChungC-S, ChangW (2002) Molecular Chaperone Hsp90 Is Important for Vaccinia Virus Growth in Cells. J Virol 76: 1379–1390 doi:10.1128/JVI.76.3.1379-1390.2002
63. JindalS, YoungRA (1992) Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 66: 5357–5362.
64. Van VlietK, MohamedMR, ZhangL, VillaNY, WerdenSJ, et al. (2009) Poxvirus proteomics and virus-host protein interactions. Microbiol Mol Biol Rev 73: 730–749 doi:10.1128/MMBR.00026-09
65. MazzonM, PetersNE, LoenarzC, KrysztofinskaEM, EmberSWJ, et al. (2013) A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A doi:10.1073/pnas.1302140110
66. ManesNP, EstepRD, MottazHM, MooreRJ, ClaussTRW, et al. (2008) Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J Proteome Res 7: 960–968 doi:+10.1021/pr070432+
67. ChungC-S, ChenC-H, HoM-Y, HuangC-Y, LiaoC-L, et al. (2006) Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 80: 2127–2140 doi:10.1128/JVI.80.5.2127-2140.2006
68. ReschW, HixsonKK, MooreRJ, LiptonMS, MossB (2007) Protein composition of the vaccinia virus mature virion. Virology 358: 233–247 doi:10.1016/j.virol.2006.08.025
69. LegendreM, SantiniS, RicoA, AbergelC, ClaverieJ-M (2011) Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J 8: 99 doi:10.1186/1743-422X-8-99
70. RaoultD, AudicS, RobertC, AbergelC, RenestoP, et al. (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306: 1344–1350 doi:10.1126/science.1101485
71. AndradeAA, SilvaPNG, PereiraACTC, De SousaLP, FerreiraPCP, et al. (2004) The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 381: 437–446 doi:10.1042/BJ20031375
72. DaiC, SantagataS, TangZ, ShiJ, CaoJ, et al. (2012) Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 122: 3742–3754 doi:10.1172/JCI62727
73. WangF-W, WuX-R, LiuW-J, LiaoY-J, LinS, et al. (2011) Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter. Virology 421: 184–191 doi:10.1016/j.virol.2011.10.001
74. RawatP, MitraD (2011) Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res 39: 5879–5892 doi:10.1093/nar/gkr198
75. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111 doi:10.1093/bioinformatics/btp120
76. HarrowJ, FrankishA, GonzalezJM, TapanariE, DiekhansM, et al. (2012) GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22: 1760–1774 doi:10.1101/gr.135350.111
77. RobinsonMD, McCarthyDJ, SmythGK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140 doi:10.1093/bioinformatics/btp616
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Lundep, a Sand Fly Salivary Endonuclease Increases Parasite Survival in Neutrophils and Inhibits XIIa Contact Activation in Human Plasma
- Reversible Silencing of Cytomegalovirus Genomes by Type I Interferon Governs Virus Latency
- Implication of PMLIV in Both Intrinsic and Innate Immunity
- Male-Killing Induces Sex-Specific Cell Death via Host Apoptotic Pathway