#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A parasite’s take on the evolutionary cell biology of MICOS


Autoři: Hassan Hashimi aff001
Působiště autorů: Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic aff001
Vyšlo v časopise: A parasite’s take on the evolutionary cell biology of MICOS. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008166
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1008166


Zdroje

1. Matthews KR (2015) 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol. Biochem. Parasitol. 200: 30–40. doi: 10.1016/j.molbiopara.2015.01.006 25736427

2. Keeling PJ, Burki F (2019) Progress towards the Tree of Eukaryotes. Curr. Biol. 29: R808–R817. doi: 10.1016/j.cub.2019.07.031 31430481

3. Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, et al. (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr. Biol. 28: 3393–3407 e3395. doi: 10.1016/j.cub.2018.09.008 30415698

4. Eichenberger C, Oeljeklaus S, Bruggisser J, Mani J, Haenni B, et al. (2019) The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol. Microbiol. doi: 10.1111/mmi.14389 31541487

5. Arnold FH (2018) Directed Evolution: Bringing New Chemistry to Life. Angew. Chem. Int. Ed. Engl. 57: 4143–4148. doi: 10.1002/anie.201708408 29064156

6. Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6.

7. Lynch M, Field MC, Goodson HV, Malik HS, Pereira-Leal JB, et al. (2014) Evolutionary cell biology: two origins, one objective. Proc. Natl. Acad. Sci. U.S.A. 111: 16990–16994. doi: 10.1073/pnas.1415861111 25404324

8. Galperin MY, Koonin EV (2012) Divergence and Convergence in Enzyme Evolution. J. Biol. Chem. 287: 21–28. doi: 10.1074/jbc.R111.241976 22069324

9. Akiyoshi B, Gull K (2014) Discovery of Unconventional Kinetochores in Kinetoplastids. Cell 156: 1247–1258. doi: 10.1016/j.cell.2014.01.049 24582333

10. Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, et al. (2016) Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 14: e1002365. doi: 10.1371/journal.pbio.1002365 26891179

11. Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G, et al. (2014) Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3: e02866. doi: 10.7554/eLife.02866 24867644

12. Schneider A (2018) Mitochondrial protein import in trypanosomatids: Variations on a theme or fundamentally different? PLoS Pathog. 14: e1007351. doi: 10.1371/journal.ppat.1007351 30496284

13. Wenger C, Oeljeklaus S, Warscheid B, Schneider A, Harsman A (2017) A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog. 13: e1006550. doi: 10.1371/journal.ppat.1006550 28827831

14. Smith JT, Singha UK, Misra S, Chaudhuri M (2018) Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei. mSphere 3: e00204–00218. doi: 10.1128/mSphere.00204-18 29925672

15. Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, et al. (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48: 373–396. doi: 10.3109/10409238.2013.821444 23895660

16. Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr. Biol. 27: 1177–1192.

17. Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. eLife 4: e07739.

18. Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, et al. (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119: 260–272. doi: 10.1006/jsbi.1997.3885 9245766

19. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, et al. (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30: 4356–4370. doi: 10.1038/emboj.2011.379 22009199

20. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, et al. (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195: 323–340. doi: 10.1083/jcb.201107053 21987634

21. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, et al. (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21: 694–707. doi: 10.1016/j.devcel.2011.08.026 21944719

22. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, et al. (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J. Cell Biol. 204: 1083–1086. doi: 10.1083/jcb.201401006 24687277

23. Callegari S, Müller T, Schulz C, Lenz C, Jans DC, et al. (2019) A MICOS–TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431: 2835–2851. doi: 10.1016/j.jmb.2019.05.015 31103774

24. Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, et al. (2015) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr. Biol. 25: 1489–1495. doi: 10.1016/j.cub.2015.04.006 26004762

25. Aaltonen MJ, Friedman JR, Osman C, Salin B, di Rago JP, et al. (2016) MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria. J. Cell Biol. 213: 525–534. doi: 10.1083/jcb.201602007 27241913

26. Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, et al. (2015) Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab. 21: 756–763. doi: 10.1016/j.cmet.2015.04.006 25955211

27. Bohnert M, Zerbes RM, Davies KM, Mühleip AW, Rampelt H, et al. (2015) Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab. 21: 747–755. doi: 10.1016/j.cmet.2015.04.007 25955210

28. Wideman JG, Novick A, Muñoz-Gómez SA, Doolittle WF (2019) Neutral evolution of cellular phenotypes. Curr Opin Genet Dev 58–59: 87–94. doi: 10.1016/j.gde.2019.09.004 31574422

29. Mordas A, Tokatlidis K (2015) The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48: 2191–2199. doi: 10.1021/acs.accounts.5b00150 26214018

30. Stojanovski D, Bragoszewski P, Chacinska A (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochim. Biophys. Acta 1823: 1142–1150. doi: 10.1016/j.bbamcr.2012.04.014 22579494

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2019 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#