Molecular Anatomy of the Receptor Binding Module of a Bacteriophage Long Tail Fiber
Autoři:
Mohammad Z. Islam aff001; Andrei Fokine aff002; Marthandan Mahalingam aff001; Zhihong Zhang aff001; Carmela Garcia-Doval aff003; Mark J. van Raaij aff003; Michael G. Rossmann aff002; Venigalla B. Rao aff001
Působiště autorů:
Department of Biology, The Catholic University of America, Washington, DC, United States of America
aff001; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
aff002; Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
aff003
Vyšlo v časopise:
Molecular Anatomy of the Receptor Binding Module of a Bacteriophage Long Tail Fiber. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008193
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1008193
Souhrn
Tailed bacteriophages (phages) are one of the most abundant life forms on Earth. They encode highly efficient molecular machines to infect bacteria, but the initial interactions between a phage and a bacterium that then lead to irreversible virus attachment and infection are poorly understood. This information is critically needed to engineer machines with novel host specificities in order to combat antibiotic resistance, a major threat to global health today. The tailed phage T4 encodes a specialized device for this purpose, the long tail fiber (LTF), which allows the virus to move on the bacterial surface and find a suitable site for infection. Consequently, the infection efficiency of phage T4 is one of the highest, reaching the theoretical value of 1. Although the atomic structure of the tip of the LTF has been determined, its functional architecture and how interactions with two structurally very different Escherichia coli receptor molecules, lipopolysaccharide (LPS) and outer membrane protein C (OmpC), contribute to virus movement remained unknown. Here, by developing direct receptor binding assays, extensive mutational and biochemical analyses, and structural modeling, we discovered that the ball-shaped tip of the LTF, a trimer of gene product 37, consists of three sets of symmetrically alternating binding sites for LPS and/or OmpC. Our studies implicate reversible and dynamic interactions between these sites and the receptors. We speculate that the LTF might function as a “molecular pivot” allowing the virus to “walk” on the bacterium by adjusting the angle or position of interaction of the six LTFs attached to the six-fold symmetric baseplate.
Klíčová slova:
Genomic library construction – Bacteriophages – Enzyme-linked immunoassays – Glycine – Glucose – Binding analysis – Viral genomics – Alanine
Zdroje
1. Hendrix RW. Bacteriophage genomics. Curr Opin Microbiol. 2003;6(5):506–11. Epub 2003/10/24. doi: 10.1016/j.mib.2003.09.004 14572544.
2. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1(4):298–303. Epub 2011/10/29. doi: 10.1016/j.coviro.2011.06.009 22034588; PubMed Central PMCID: PMC3199584.
3. Tao P, Wu X, Tang WC, Zhu J, Rao V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth Biol. 2017;6(10):1952–61. doi: 10.1021/acssynbio.7b00179 28657724; PubMed Central PMCID: PMC5771229.
4. Segall AM, Roach DR, Strathdee SA. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr Opin Microbiol. 2019;51:46–50. Epub 2019/06/22. doi: 10.1016/j.mib.2019.03.005 31226502.
5. Maniloff J, Ackermann HW. Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch Virol. 1998;143(10):2051–63. Epub 1998/12/18. doi: 10.1007/s007050050442 9856093.
6. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev. 2003;67(1):86–156, table of contents. Epub 2003/03/11. doi: 10.1128/MMBR.67.1.86-156.2003 12626685; PubMed Central PMCID: PMC150520.
7. Yap ML, Rossmann MG. Structure and function of bacteriophage T4. Future Microbiol. 2014;9(12):1319–27. Epub 2014/12/18. doi: 10.2217/fmb.14.91 25517898; PubMed Central PMCID: PMC4275845.
8. Arisaka F, Engel J, Klump H. Contraction and dissociation of the bacteriophage T4 tail sheath induced by heat and urea. Prog Clin Biol Res. 1981;64:365–79. Epub 1981/01/01. 7330053.
9. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, et al. Structure of the cell-puncturing device of bacteriophage T4. Nature. 2002;415(6871):553–7. Epub 2002/02/02. doi: 10.1038/415553a 11823865.
10. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, et al. Morphogenesis of the T4 tail and tail fibers. Virol J. 2010;7:355. Epub 2010/12/07. doi: 10.1186/1743-422X-7-355 21129200; PubMed Central PMCID: PMC3004832.
11. Taylor NMI, van Raaij MJ, Leiman PG. Contractile injection systems of bacteriophages and related systems. Mol Microbiol. 2018;108(1):6–15. Epub 2018/02/07. doi: 10.1111/mmi.13921 29405518.
12. Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci. 2003;60(11):2356–70. Epub 2003/11/20. doi: 10.1007/s00018-003-3072-1 14625682.
13. Mathews CK, Kutter E., Mosig G., and Berget P.B. Bacteriophage T4. Washington, D.C: American Society for Microbiology; 1983.
14. King J, Laemmli UK. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971;62(3):465–77. Epub 1971/12/28. doi: 10.1016/0022-2836(71)90148-3 5136579.
15. Granell M, Namura M, Alvira S, Kanamaru S, van Raaij MJ. Crystal Structure of the Carboxy-Terminal Region of the Bacteriophage T4 Proximal Long Tail Fiber Protein Gp34. Viruses. 2017;9(7). Epub 2017/07/01. doi: 10.3390/v9070168 28665339; PubMed Central PMCID: PMC5537660.
16. Cerritelli ME, Wall JS, Simon MN, Conway JF, Steven AC. Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. J Mol Biol. 1996;260(5):767–80. Epub 1996/08/02. doi: 10.1006/jmbi.1996.0436 8709154.
17. Hashemolhosseini S, Stierhof YD, Hindennach I, Henning U. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J Bacteriol. 1996;178(21):6258–65. Epub 1996/11/01. doi: 10.1128/jb.178.21.6258-6265.1996 8892827; PubMed Central PMCID: PMC178498.
18. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, et al. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci U S A. 2010;107(47):20287–92. Epub 2010/11/03. doi: 10.1073/pnas.1011218107 21041684; PubMed Central PMCID: PMC2996694.
19. Pulido D, Moussaoui M, Andreu D, Nogues MV, Torrent M, Boix E. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrob Agents Chemother. 2012;56(5):2378–85. Epub 2012/02/15. doi: 10.1128/AAC.06107-11 22330910; PubMed Central PMCID: PMC3346588.
20. Dawes J. Characterisation of the bacteriophage T4 receptor site. Nature. 1975;256(5513):127–8. Epub 1975/07/10. doi: 10.1038/256127a0 1097935.
21. Washizaki A, Yonesaki T, Otsuka Y. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen. 2016;5(6):1003–15. Epub 2016/06/09. doi: 10.1002/mbo3.384 27273222; PubMed Central PMCID: PMC5221442.
22. Montag D, Hashemolhosseini S, Henning U. Receptor-recognizing proteins of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol. 1990;216(2):327–34. Epub 1990/11/20. doi: 10.1016/S0022-2836(05)80324-9 2147721.
23. Prehm P, Jann B, Jann K, Schmidt G, Stirm S. On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B. J Mol Biol. 1976;101(2):277–81. Epub 1976/02/25. doi: 10.1016/0022-2836(76)90377-6 772219.
24. Mutoh N, Furukawa H, Mizushima S. Role of lipopolysaccharide and outer membrane protein of Escherichia coli K-12 in the receptor activity for bacteriophage T4. J Bacteriol. 1978;136(2):693–9. Epub 1978/11/01. 361717; PubMed Central PMCID: PMC218595.
25. Yu F, Mizushima S. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol. 1982;151(2):718–22. Epub 1982/08/01. 7047495; PubMed Central PMCID: PMC220313.
26. Hu B, Margolin W, Molineux IJ, Liu J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A. 2015;112(35):E4919–28. Epub 2015/08/19. doi: 10.1073/pnas.1501064112 26283379; PubMed Central PMCID: PMC4568249.
27. Hu B, Margolin W, Molineux IJ, Liu J. The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science. 2013;339(6119):576–9. Epub 2013/01/12. doi: 10.1126/science.1231887 23306440; PubMed Central PMCID: PMC3873743.
28. Edgar R, Rokney A, Feeney M, Semsey S, Kessel M, Goldberg MB, et al. Bacteriophage infection is targeted to cellular poles. Mol Microbiol. 2008;68(5):1107–16. Epub 2008/03/28. doi: 10.1111/j.1365-2958.2008.06205.x 18363799; PubMed Central PMCID: PMC3740151.
29. Rothenberg E, Sepulveda LA, Skinner SO, Zeng L, Selvin PR, Golding I. Single-virus tracking reveals a spatial receptor-dependent search mechanism. Biophys J. 2011;100(12):2875–82. Epub 2011/06/22. doi: 10.1016/j.bpj.2011.05.014 21689520; PubMed Central PMCID: PMC3123979.
30. Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, et al. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol. 2014;92(1):47–60. Epub 2014/03/29. doi: 10.1111/mmi.12536 24673644; PubMed Central PMCID: PMC4034267.
31. Bhardwaj A, Olia AS, Cingolani G. Architecture of viral genome-delivery molecular machines. Curr Opin Struct Biol. 2014;25:1–8. Epub 2014/06/01. doi: 10.1016/j.sbi.2013.10.005 24878339; PubMed Central PMCID: PMC4040186.
32. Riede I. Receptor specificity of the short tail fibres (gp12) of T-even type Escherichia coli phages. Mol Gen Genet. 1987;206(1):110–5. Epub 1987/01/01. doi: 10.1007/bf00326544 3553859.
33. Kostyuchenko VA, Navruzbekov GA, Kurochkina LP, Strelkov SV, Mesyanzhinov VV, Rossmann MG. The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure. 1999;7(10):1213–22. Epub 1999/11/05. doi: 10.1016/s0969-2126(00)80055-6 10545330.
34. Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol. 2005;12(9):810–3. Epub 2005/08/24. doi: 10.1038/nsmb975 16116440.
35. Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature. 2016;533(7603):346–52. Epub 2016/05/20. doi: 10.1038/nature17971 27193680.
36. Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, et al. Role of bacteriophage T4 baseplate in regulating assembly and infection. Proc Natl Acad Sci U S A. 2016;113(10):2654–9. Epub 2016/03/02. doi: 10.1073/pnas.1601654113 26929357; PubMed Central PMCID: PMC4791028.
37. Dunne M, Denyes JM, Arndt H, Loessner MJ, Leiman PG, Klumpp J. Salmonella Phage S16 Tail Fiber Adhesin Features a Rare Polyglycine Rich Domain for Host Recognition. Structure. 2018;26(12):1573–82 e4. Epub 2018/09/25. doi: 10.1016/j.str.2018.07.017 30244968.
38. Salazar AJ, Sherekar M, Tsai J, Sacchettini JC. R pyocin tail fiber structure reveals a receptor-binding domain with a lectin fold. PLoS One. 2019;14(2):e0211432. Epub 2019/02/06. doi: 10.1371/journal.pone.0211432 30721244; PubMed Central PMCID: PMC6363177.
39. Arisaka F. Assemblyand infection process of bacteriophage T4. Chaos. 2005;15(4):047502. Epub 2006/01/07. doi: 10.1063/1.2142136 16396595.
40. Goldberg E, Grinius L., and Letellier L. Recognition, attachment, and injection. In: Karam JD, Drake J.W., Kreuzer K.N., Mosig G., Hall D.H., Eiserling F.A., Black L.W., Spicer E.K., Kutter E., Carlson K., and Miller E.S., editor. Molecular biology of bacteriophage T4. Washington, D.C: American Society for Microbiology; 1994. p. 347–56.
41. Hashemolhosseini S, Montag D, Kramer L, Henning U. Determinants of receptor specificity of coliphages of the T4 family. A chaperone alters the host range. J Mol Biol. 1994;241(4):524–33. Epub 1994/08/26. doi: 10.1006/jmbi.1994.1529 8057378.
42. Tetart F, Repoila F, Monod C, Krisch HM. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol. 1996;258(5):726–31. Epub 1996/05/24. doi: 10.1006/jmbi.1996.0281 8637004.
43. Basle A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J Mol Biol. 2006;362(5):933–42. Epub 2006/09/05. doi: 10.1016/j.jmb.2006.08.002 16949612.
44. Bartual SG, Garcia-Doval C, Alonso J, Schoehn G, van Raaij MJ. Two-chaperone assisted soluble expression and purification of the bacteriophage T4 long tail fibre protein gp37. Protein Expr Purif. 2010;70(1):116–21. Epub 2009/11/17. doi: 10.1016/j.pep.2009.11.005 19913618.
45. Rezania S, Amirmozaffari N, Tabarraei B, Jeddi-Tehrani M, Zarei O, Alizadeh R, et al. Extraction, Purification and Characterization of Lipopolysaccharide from Escherichia coli and Salmonella typhi. Avicenna J Med Biotechnol. 2011;3(1):3–9. Epub 2011/01/01. 23407691; PubMed Central PMCID: PMC3558174.
46. Normanly J, Kleina LG, Masson JM, Abelson J, Miller JH. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. J Mol Biol. 1990;213(4):719–26. Epub 1990/06/20. doi: 10.1016/S0022-2836(05)80258-X 2141650.
47. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. Epub 2009/06/06. doi: 10.1002/jcc.21334 19499576; PubMed Central PMCID: PMC3041641.
48. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server issue):W363–7. Epub 2005/06/28. doi: 10.1093/nar/gki481 15980490; PubMed Central PMCID: PMC1160241.
49. Trojet SN, Caumont-Sarcos A, Perrody E, Comeau AM, Krisch HM. The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage's host specificity. Genome Biol Evol. 2011;3:674–86. Epub 2011/07/13. doi: 10.1093/gbe/evr059 21746838; PubMed Central PMCID: PMC3157838.
50. Thomassen E, Gielen G, Schutz M, Schoehn G, Abrahams JP, Miller S, et al. The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. J Mol Biol. 2003;331(2):361–73. Epub 2003/07/31. doi: 10.1016/s0022-2836(03)00755-1 12888344.
51. Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. Epub 1981/01/01. doi: 10.1016/s0065-3233(08)60520-3 7020376.
52. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–9. Epub 1963/07/01. doi: 10.1016/s0022-2836(63)80023-6 13990617.
53. Tolia NH, Joshua-Tor L. Strategies for protein coexpression in Escherichia coli. Nat Methods. 2006;3(1):55–64. Epub 2005/12/22. doi: 10.1038/nmeth0106-55 16369554.
54. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. Epub 1990/01/01. doi: 10.1016/0076-6879(90)85008-c 2199796.
55. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989;77(1):61–8. Epub 1989/04/15. doi: 10.1016/0378-1119(89)90359-4 2744488.
56. Sathaliyawala T, Islam MZ, Li Q, Fokine A, Rossmann MG, Rao VB. Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages. Mol Microbiol. 2010;77(2):444–55. Epub 2010/05/26. doi: 10.1111/j.1365-2958.2010.07219.x 20497329; PubMed Central PMCID: PMC2909354.
57. Rao VB, Mitchell MS. The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4. J Mol Biol. 2001;314(3):401–11. Epub 2002/02/16. doi: 10.1006/jmbi.2001.5169 11846554.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2019 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency