Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel
Autoři:
Sudhanva S. Kashyap aff001; Saurabh Verma aff001; Denis Voronin aff002; Sara Lustigman aff002; Daniel Kulke aff003; Alan P. Robertson aff001; Richard J. Martin aff001
Působiště autorů:
Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
aff001; Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
aff002; Bayer Animal Health GmbH, Drug Discovery and External Innovation, Leverkusen, Germany
aff003
Vyšlo v časopise:
Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008041
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1008041
Souhrn
Filariae are parasitic nematodes that are transmitted to their definitive host as third-stage larvae by arthropod vectors like mosquitoes. Filariae cause diseases including: lymphatic filariasis with distressing and disturbing symptoms like elephantiasis; and river blindness. Filarial diseases affect millions of people in 73 countries throughout the topics and sub-tropics. The drugs available for mass drug administration, (ivermectin, albendazole and diethylcarbamazine), are ineffective against adult filariae (macrofilariae) at the registered dosing regimen; this generates a real and urgent need to identify effective macrofilaricides. Emodepside, a veterinary anthelmintic registered for treatment of nematode infections in cats and dogs, is reported to have macrofilaricidal effects. Here, we explore the mode of action of emodepside using adult Brugia malayi, one of the species that causes lymphatic filariasis. Whole-parasite motility measurement with Worminator and patch-clamp of single muscle cells show that emodepside potently inhibits motility by activating voltage-gated potassium channels and that the male is more sensitive than the female. RNAi knock down suggests that emodepside targets SLO-1 K channels. We expressed slo-1 isoforms, with alternatively spliced exons at the RCK1 (Regulator of Conductance of Potassium) domain, heterologously in Xenopus laevis oocytes. We discovered that the slo-1f isoform, found in muscles of males, is more sensitive to emodepside than the slo-1a isoform found in muscles of females; and selective RNAi of the slo-1a isoform in female worms increased emodepside potency. In Onchocerca volvulus, that causes river blindness, we found two isoforms in adult females with homology to Bma-SLO-1A and Bma-SLO-1F at the RCK1 domain. In silico modeling identified an emodepside binding pocket in the same RCK1 region of different species of filaria that is affected by these splice variations. Our observations show that emodepside has potent macrofilaricidal effects and alternative splicing in the RCK1 binding pocket affects potency. Therefore, the evaluation of potential sex-dependent effects of an anthelmintic compound is of importance to prevent any under-dosing of one or the other gender of nematodes once given to patients.
Klíčová slova:
Veterinary diseases – Nematode infections – Brugia malayi – Xenopus oocytes – Onchocerca volvulus – Alternative splicing – Onchocerciasis
Zdroje
1. Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet (London, England). 2010;376(9747):1175–85. Epub 2010/08/27. doi: 10.1016/s0140-6736(10)60586-7 20739055.
2. WHO. Global Progress Towards Elimination 2019. Available from: https://www.who.int/lymphatic_filariasis/global_progress/en/.
3. DNDi. R&D Portfolio Update March 2018: DNDi Filarial diseases programme 2018. Available from: https://www.dndi.org/2018/media-centre/news-views-stories/news/filaria_rnd_status_2018/.
4. Kulke D, Townson S, Bloemker D, Frohberger S, Specht S, Scandale I, et al. Comparison of the in vitro susceptibility to emodepside of microfilariae, third-stage larvae and adult worms of related filarial nematodes. ASTHM, Baltimore, USA. 2017;97 (5):563. doi: 10.13140/RG.2.2.23659.85288
5. DNDi. 2018 Update. 2018. Available from: https://www.dndi.org/diseases-projects/portfolio/emodepside/.
6. Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M. A new anthelmintic cyclodepsipeptide, PF1022A. The Journal of antibiotics. 1992;45(5):692–7. doi: 10.7164/antibiotics.45.692 Epub 1992/05/01. 1624372.
7. von Samson-Himmelstjerna G, Harder A, Sangster NC, Coles GC. Efficacy of two cyclooctadepsipeptides, PF1022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology. 2005;130(Pt 3):343–7. Epub 2005/03/31. doi: 10.1017/s0031182004006523 15796017.
8. Chen W, Terada M, Cheng JT. Characterization of subtypes of gamma-aminobutyric acid receptors in an Ascaris muscle preparation by binding assay and binding of PF1022A, a new anthelmintic, on the receptors. Parasitology research. 1996;82(2):97–101. Epub 1996/01/01. doi: 10.1007/s004360050077 8825201.
9. Miltsch SM, Krucken J, Demeler J, Janssen IJ, Kruger N, Harder A, et al. Decreased emodepside sensitivity in unc-49 gamma-aminobutyric acid (GABA)-receptor-deficient Caenorhabditis elegans. International journal for parasitology. 2012;42(8):761–70. Epub 2012/06/26. doi: 10.1016/j.ijpara.2012.05.009 22727682.
10. Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, et al. Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2001;15(7):1332–4. Epub 2001/05/10. doi: 10.1096/fj.00-0664fje 11344131.
11. Willson J, Amliwala K, Davis A, Cook A, Cuttle MF, Kriek N, et al. Latrotoxin receptor signaling engages the UNC-13-dependent vesicle-priming pathway in C. elegans. Current biology: CB. 2004;14(15):1374–9. Epub 2004/08/07. doi: 10.1016/j.cub.2004.07.056 15296755.
12. Crisford A, Murray C, O'Connor V, Edwards RJ, Kruger N, Welz C, et al. Selective toxicity of the anthelmintic emodepside revealed by heterologous expression of human KCNMA1 in Caenorhabditis elegans. Molecular pharmacology. 2011;79(6):1031–43. Epub 2011/03/19. doi: 10.1124/mol.111.071043 21415309.
13. Willson J, Amliwala K, Harder A, Holden-Dye L, Walker RJ. The effect of the anthelmintic emodepside at the neuromuscular junction of the parasitic nematode Ascaris suum. Parasitology. 2003;126(Pt 1):79–86. Epub 2003/03/05. doi: 10.1017/s0031182002002639 12613766.
14. Buxton SK, Neveu C, Charvet CL, Robertson AP, Martin RJ. On the mode of action of emodepside: slow effects on membrane potential and voltage-activated currents in Ascaris suum. British journal of pharmacology. 2011;164(2b):453–70. Epub 2011/04/14. doi: 10.1111/j.1476-5381.2011.01428.x 21486286.
15. Guest M, Bull K, Walker RJ, Amliwala K, O'Connor V, Harder A, et al. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. International journal for parasitology. 2007;37(14):1577–88. Epub 2007/06/23. doi: 10.1016/j.ijpara.2007.05.006 17583712.
16. Holden-Dye L, Crisford A, Welz C, von Samson-Himmelstjerna G, Walker RJ, O'Connor V. Worms take to the slo lane: a perspective on the mode of action of emodepside. Invertebrate neuroscience: IN. 2012;12(1):29–36. Epub 04/27. doi: 10.1007/s10158-012-0133-x 22539031.
17. Zahner H, Taubert A, Harder A, von Samson-Himmelstjerna G. Filaricidal efficacy of anthelmintically active cyclodepsipeptides. International journal for parasitology. 2001;31(13):1515–22. Epub 2001/10/12. doi: 10.1016/s0020-7519(01)00263-6 11595239.
18. Townson S, Freeman A, Harris A, Harder A. Activity of the cyclooctadepsipeptide emodepside against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Am J Trop Med Hyg. 2005;73(6):93. doi: 10.4269/ajtmh.2005.73.51
19. Robertson AP, Puttachary S, Martin RJ. Single-channel recording from adult Brugia malayi. Invert Neurosci. 2011;11(1):53–7. doi: 10.1007/s10158-011-0118-1 21590329.
20. Verma S, Kashyap SS, Robertson AP, Martin RJ. Functional genomics in Brugia malayi reveal diverse muscle nAChRs and differences between cholinergic anthelmintics. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(21):5539–44. Epub 2017/05/11. doi: 10.1073/pnas.1619820114 28487481.
21. Candia S, Garcia ML, Latorre R. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophysical journal. 1992;63(2):583–90. Epub 1992/08/01. doi: 10.1016/S0006-3495(92)81630-2 1384740.
22. Kulke D, von Samson-Himmelstjerna G, Miltsch SM, Wolstenholme AJ, Jex AR, Gasser RB, et al. Characterization of the Ca2+-gated and voltage-dependent K+-channel SLO-1 of nematodes and its interaction with emodepside. PLoS neglected tropical diseases. 2014;8(12):e3401. Epub 2014/12/19. doi: 10.1371/journal.pntd.0003401 25521608.
23. Kim H, Pierce-Shimomura JT, Oh HJ, Johnson BE, Goodman MB, McIntire SL. The Dystrophin Complex Controls BK Channel Localization and Muscle Activity in Caenorhabditis elegans. PLOS Genetics. 2009;5(12):e1000780. doi: 10.1371/journal.pgen.1000780 20019812.
24. Krudewagen EM, Remer C, Deuster K, Schunack B, Wolken S, Crafford D, et al. Chemical Compatibility and Safety of Imidacloprid/Flumethrin Collar (Seresto) Concomitantly Used with Imidacloprid/Moxidectin (Advocate, Advantage Multi) and Emodepside/Praziquantel (Profender) Spot-on Formulations. Parasitology research. 2015;114 Suppl 1:S55–80. Epub 2015/07/15. doi: 10.1007/s00436-015-4514-z 26152409.
25. Holden-Dye L, O'Connor V, Hopper NA, Walker RJ, Harder A, Bull K, et al. SLO, SLO, quick, quick, slow: calcium-activated potassium channels as regulators of Caenorhabditis elegans behaviour and targets for anthelmintics. Invert Neurosci. 2007;7(4):199–208. Epub 2007/10/27. doi: 10.1007/s10158-007-0057-z 17962986.
26. Lee US, Cui J. BK channel activation: structural and functional insights. Trends Neurosci. 2010;33(9):415–23. doi: 10.1016/j.tins.2010.06.004 20663573.
27. Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, et al. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev. 2017;97(1):39–87. doi: 10.1152/physrev.00001.2016 27807200.
28. Stuchlikova LR, Matouskova P, Vokral I, Lamka J, Szotakova B, Seckarova A, et al. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites. International journal for parasitology Drugs and drug resistance. 2018;8(1):50–8. Epub 2018/02/08. doi: 10.1016/j.ijpddr.2018.01.005 29414106.
29. Le Jambre LF, Gill JH, Lenane IJ, Baker P. Inheritance of avermectin resistance in Haemonchus contortus. International journal for parasitology. 2000;30(1):105–11. Epub 2000/02/17. doi: 10.1016/s0020-7519(99)00172-1 10675751.
30. Hu Y, Ellis BL, Yiu YY, Miller MM, Urban JF, Shi LZ, et al. An extensive comparison of the effect of anthelmintic classes on diverse nematodes. PLoS One. 2013;8(7):e70702. doi: 10.1371/journal.pone.0070702 23869246.
31. Marcellino C, Gut J, Lim KC, Singh R, McKerrow J, Sakanari J. WormAssay: A Novel Computer Application for Whole-Plate Motion-based Screening of Macroscopic Parasites. PLoS neglected tropical diseases. 2012;6(1):e1494. doi: 10.1371/journal.pntd.0001494 22303493.
32. Qian H, Robertson AP, Powell-Coffman JA, Martin RJ. Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans. FASEB J. 2008. doi: 10.1096/fj.08-110502 18519804.
33. Richmond JE, Jorgensen EM. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. NatNeurosci. 1999;2(9):791–7. doi: 10.1038/12160 10461217.
34. Robertson AP, Buxton SK, Martin RJ. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle. Parasitology international. 2013;62(6):616–8. Epub 2013/04/09. doi: 10.1016/j.parint.2013.03.008 23562945.
35. McCoy CJ, Warnock ND, Atkinson LE, Atcheson E, Martin RJ, Robertson AP, et al. RNA interference in adult Ascaris suum–an opportunity for the development of a functional genomics platform that supports organism-, tissue- and cell-based biology in a nematode parasite. International journal for parasitology. 2015;45(11):673–8. doi: 10.1016/j.ijpara.2015.05.003 26149642.
36. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45 11328886.
37. David MA, Orlowski S, Prichard RK, Hashem S, André F, Lespine A. In silico analysis of the binding of anthelmintics to Caenorhabditis elegans P-glycoprotein 1. International journal for parasitology Drugs and drug resistance. 2016;6(3):299–313. doi: 10.1016/j.ijpddr.2016.09.001 27746191.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2019 Číslo 9
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
- Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize