The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis
Autoři:
Camilla Jensen aff001; Kristoffer T. Bæk aff001; Clement Gallay aff002; Ida Thalsø-Madsen aff001; Lijuan Xu aff001; Ambre Jousselin aff003; Fernando Ruiz Torrubia aff001; Wilhelm Paulander aff001; Ana R. Pereira aff003; Jan-Willem Veening aff002; Mariana G. Pinho aff003; Dorte Frees aff001
Působiště autorů:
Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
aff001; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
aff002; Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
aff003
Vyšlo v časopise:
The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008044
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1008044
Souhrn
β-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of β-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of β-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with β-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by β-lactams or by inhibiting an early step in WTA biosynthesis. The finding that β-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that β-lactams do not kill S. aureus simply by weakening the cell wall.
Klíčová slova:
Biology and life sciences – Cell biology – Biochemistry – Organisms – Physical sciences – Chemistry – Cell processes – Cell cycle and cell division – Medicine and health sciences – Cellular structures and organelles – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Bacteria – Pathology and laboratory medicine – Pathogens – Polymer chemistry – Macromolecules – Polymers – Materials science – Materials – Physiology – Pharmacology – Physiological processes – Tissue repair – Lysis (medicine) – Staphylococcus – Staphylococcus aureus – Methicillin-resistant Staphylococcus aureus – Microbial control – Antimicrobials – Antibiotics – Cell walls – Biosynthesis – Drugs – Peptidoglycans
Zdroje
1. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375: 1557–1568. doi: 10.1016/S0140-6736(09)61999-1 20206987
2. Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol. 2003;61: 385–392. doi: 10.1007/s00253-003-1274-y 12679848
3. Wise EM, Park JT. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci USA. 1965;54: 75–81. doi: 10.1073/pnas.54.1.75 5216369
4. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA. 1965;54: 1133–1141. doi: 10.1073/pnas.54.4.1133 5219821
5. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33: 113–137. doi: 10.1146/annurev.mi.33.100179.000553 40528
6. McDowell TD, Reed KE. Mechanism of penicillin killing in the absence of bacterial lysis. Antimicrob Agents Chemother. 1989;33: 1680–1685. doi: 10.1128/aac.33.10.1680 2480078
7. Giesbrecht P, Kersten T, Maidhof H, Wecke J. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev. 1998;62: 1371–1414. 9841676
8. Bayles KW. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol. 2000;8: 274–278. 10838585
9. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159: 1300–1311. doi: 10.1016/j.cell.2014.11.017 25480295
10. Pinho MG, Kjos M, Veening J-W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol. 2013;11: 601–614. doi: 10.1038/nrmicro3088 23949602
11. Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, et al. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog. 2015;11: e1004891. doi: 10.1371/journal.ppat.1004891 25951442
12. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84: 577–601. doi: 10.1146/annurev-biochem-060614-034516 26034890
13. Rolo J, Worning P, Nielsen JB, Sobral R, Bowden R, Bouchami O, et al. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci. PLoS Genetics. 2017;13: e1006674. doi: 10.1371/journal.pgen.1006674 28394942
14. Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol. 2011;6: 106–116. doi: 10.1021/cb100269f 20961110
15. Farha MA, Leung A, Sewell EW, D’Elia MA, Allison SE, Ejim L, et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol. 2012;8: 226–233. doi: 10.1021/cb300413m 23062620
16. Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T, et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med. 2016;8: 329ra32.
17. Drawz SM, Bonomo RA, Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23: 60–201.
18. Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol. 2016;14: 33–44. doi: 10.1038/nrmicro.2015.4 26639779
19. Frees D, Qazi S, Hill PJ, Ingmer H. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol. 2003;48:1565–1578. doi: 10.1046/j.1365-2958.2003.03524.x 12791139
20. Bæk K, Bowman L, Søgaard M, Kaever V, Siljamäki P, Savijoki K, et al. The cell wall polymer lipoteichoic acid becomes non-essential in Staphylococcus aureus cells lacking the ClpX chaperone. MBio. 2016;7: e01228–16. doi: 10.1128/mBio.01228-16 27507828
21. Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, et al. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep. 2017;7: 11739. doi: 10.1038/s41598-017-12122-y 28924169
22. Percy MG, Gründling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68: 81–100. doi: 10.1146/annurev-micro-091213-112949 24819367
23. Bæk KT, Gründling A, Mogensen RG, Thøgersen L, Petersen A, Paulander W, et al. β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother. 2014;58: 4593–4603. doi: 10.1128/AAC.02802-14 24867990
24. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, et al. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun. 2015;6: 8055. doi: 10.1038/ncomms9055 26278781
25. Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK, Huang KC et al. Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science. 2015;348: 574–8. doi: 10.1126/science.aaa1511 25931560
26. Kahl BC, Belling G, Reichelt R, Herrmann M, Proctor RA, Peters G. Thymidine-dependent small-colony variants of Staphylococcus aureus exhibit gross morphological and ultrastructural changes consistent with impaired cell separation. J Clin Microbiol. 2003;41:410–3. doi: 10.1128/JCM.41.1.410-413.2003 12517881
27. Paul TR, Venter A, Blaszczak LC, Parr TR, Labischinski H, Beveridge TJ. Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin V derivative. J Bacteriol. 1995;177: 3631–3640. doi: 10.1128/jb.177.13.3631-3640.1995 7541399
28. Lorian V. Some effect of subinbilitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother. 1975;7: 864–867. doi: 10.1128/aac.7.6.864 1155930
29. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed. 2012;51: 12519–12523.
30. Lund VA, Wacnik K, Turner RD, Cotterell BE, Walther CG, Fenn SJ, et al. Molecular coordination of Staphylococcus aureus cell division. Elife. 2018;7: e32057. doi: 10.7554/eLife.32057 29465397
31. Weart RB, Nakano S, Lane BE, Zuber P, Levin PA. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol. 2005;57: 238–249. doi: 10.1111/j.1365-2958.2005.04673.x 15948963
32. Dziedzic R, Kiran M, Plocinski P, Ziolkiewicz M, Brzostek A, Moomey M, et al. Mycobacterium tuberculosis ClpX Interacts with FtsZ and Interferes with FtsZ Assembly. PLoS ONE. 2010;5: e11058. doi: 10.1371/journal.pone.0011058 20625433
33. Sugimoto S, Yamanaka K, Nishikori S, Miyagi A, Ando T, Ogura T. AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ. J Biol Chem. 2010;285: 6648–6657. doi: 10.1074/jbc.M109.080739 20022957
34. Haeusser DP, Lee AH, Weart RB, Levin PA. ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. J Bacteriol. 2009;191: 1986–1991. doi: 10.1128/JB.01606-07 19136590
35. Liew AT, Theis T, Jensen SO, Garcia-Lara J, Foster SJ, Firth N, et al. A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology. 2011;157: 666–76. doi: 10.1099/mic.0.045146-0 21109562
36. Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, Veiga H, et al. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature. 2018;554:528–532. doi: 10.1038/nature25506 29443967
37. Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother. 1995;35: 75–84. doi: 10.1093/jac/35.1.75 7768785
38. Georgopapadakou NH, Smith SA, Bonner DP. Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific beta-lactam antibiotics. Antimicrob Agents Chemother. 1982;22: 172–175. doi: 10.1128/aac.22.1.172 7125630
39. Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2010;54: 1670–1677. doi: 10.1128/AAC.00019-10 20194704
40. Okonog K, Noji Y, Nakao M, Imada A. The Possible Physiological Roles of Penicillin-Binding Proteins of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus. J Infect Chemother. 1995;1: 50–58.
41. Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S. An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56: 1810–1820. doi: 10.1128/AAC.05938-11 22290958
42. Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, et al. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol. 2010;75: 864–73. doi: 10.1111/j.1365-2958.2009.07007.x 20105277
43. Zoll S, Schlag M, Shkumatov AV, Rautenberg M, Svergun DI, Götz F, Stehle T. Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. 2012; J Bacteriol. 194:3789–3802. doi: 10.1128/JB.00331-12 22609916
44. Matias VR, Beveridge TJ. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol. 2006;188: 1011–1021. doi: 10.1128/JB.188.3.1011-1021.2006 16428405
45. Kajimura J. Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I, Yamagishi J, Komatsuzawa H, Sugai M. et al. Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. 2005; Mol Microbiol., 58:1087–101. doi: 10.1111/j.1365-2958.2005.04881.x 16262792
46. Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, et al. An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol. 1996;178: 1565–1571. doi: 10.1128/jb.178.6.1565-1571.1996 8626282
47. Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, et al. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res. 2013;12: 547–58. doi: 10.1021/pr300394r 23253041
48. Gamba P, Veening JW, Saunders NJ, Hamoen LW, Daniel RA. Two-step assembly dynamics of the Bacillus subtilis divisome. J Bacteriol. 2009; 191:4186–4194. doi: 10.1128/JB.01758-08 19429628
49. Chung HS, Yao Z, Goehring NW, Kishony R, Beckwith J, Kahne D. Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci USA. 2009;106: 21872–21877. doi: 10.1073/pnas.0911674106 19995973
50. Pereira SFF, Henriques AO, Pinho MG, Tomasz A. Role of PBP1 in cell division of Staphylococcus aureus. J Bacteriol. 2007;189: 3525–3531. doi: 10.1128/JB.00044-07 17307860
51. Pereira SFF, Henriques AO, Pinho MG, Lencastre H de, Tomasz A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol Microbiol. 2009;72: 895–904. doi: 10.1111/j.1365-2958.2009.06687.x 19400776
52. de Jong IG, Beilharz K, Kuipers OP, Veening JW. J. Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy. Vis Exp. 2011;53.
53. Filipe SJ, Tomasz A, Ligoxygakis P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep. 2005; 6:327–333. doi: 10.1038/sj.embor.7400371 15791270
54. de Jonge BL, Chang YS, Gage D, Tomasz A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem. 1992; 267: 11248–11254. 1597460
55. Sieradzki K1, Pinho MG, Tomasz A. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J Biol Chem. 1999; 274: 18942–18946. doi: 10.1074/jbc.274.27.18942 10383392
56. Atilano ML, Pereirab PM, Yatesa J, Reedb P, Veigab H, Pinho MG & Filipea SR. Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. PNAS. 2010; 107: 18991–18996. doi: 10.1073/pnas.1004304107 20944066
57. Vergara-Irigaray M, Maira-Litrán T, Merino N, Pier GB, Penadés JR, Lasa I. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology. 2008; 154:865–77. doi: 10.1099/mic.0.2007/013292-0 18310032
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2019 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11