#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize


Autoři: Pascal Pecher aff001;  Gabriele Moro aff001;  Maria Cristina Canale aff001;  Sylvain Capdevielle aff001;  Archana Singh aff001;  Allyson MacLean aff001;  Akiko Sugio aff001;  Chih-Horng Kuo aff003;  Joao R. S. Lopes aff002;  Saskia A. Hogenhout aff001
Působiště autorů: John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich, United Kingdom aff001;  Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, University of São Paulo, Piracicaba, Brazil aff002;  Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan aff003
Vyšlo v časopise: Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize. PLoS Pathog 15(9): e1008035. doi:10.1371/journal.ppat.1008035
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1008035

Souhrn

Phytoplasmas are insect-transmitted bacterial pathogens that colonize a wide range of plant species, including vegetable and cereal crops, and herbaceous and woody ornamentals. Phytoplasma-infected plants often show dramatic symptoms, including proliferation of shoots (witch’s brooms), changes in leaf shapes and production of green sterile flowers (phyllody). Aster Yellows phytoplasma Witches’ Broom (AY-WB) infects dicots and its effector, secreted AYWB protein 11 (SAP11), was shown to be responsible for the induction of shoot proliferation and leaf shape changes of plants. SAP11 acts by destabilizing TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCP) transcription factors, particularly the class II TCPs of the CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) and CINCINNATA (CIN)-TCP clades. SAP11 homologs are also present in phytoplasmas that cause economic yield losses in monocot crops, such as maize, wheat and coconut. Here we show that a SAP11 homolog of Maize Bushy Stunt Phytoplasma (MBSP), which has a range primarily restricted to maize, destabilizes specifically TB1/CYC TCPs. SAP11MBSP and SAP11AYWB both induce axillary branching and SAP11AYWB also alters leaf development of Arabidopsis thaliana and maize. However, only in maize, SAP11MBSP prevents female inflorescence development, phenocopying maize tb1 lines, whereas SAP11AYWB prevents male inflorescence development and induces feminization of tassels. SAP11AYWB promotes fecundity of the AY-WB leafhopper vector on A. thaliana and modulates the expression of A. thaliana leaf defence response genes that are induced by this leafhopper, in contrast to SAP11MBSP. Neither of the SAP11 effectors promote fecundity of AY-WB and MBSP leafhopper vectors on maize. These data provide evidence that class II TCPs have overlapping but also distinct roles in regulating development and defence in a dicot and a monocot plant species that is likely to shape SAP11 effector evolution depending on the phytoplasma host range.

Klíčová slova:

Maize – Sequence alignment – Transcription factors – Genetically modified plants – Leaves – Flowering plants – Arabidopsis thaliana – Phytoplasmas


Zdroje

1. Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, et al. A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology. 1989;171(12):6455–67. doi: 10.1128/jb.171.12.6455-6467.1989 2592342

2. Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT. Phylogeny of mycoplasmalike organisms (Phytoplasmas): a basis for their classification. Journal of Bacteriology. 1994;176(17):5244–54. doi: 10.1128/jb.176.17.5244-5254.1994 8071198

3. Lee IM, Davis RE, Gundersen-Rindal DE. Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol. 2000;54:221–55. doi: 10.1146/annurev.micro.54.1.221 11018129

4. Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol. 2006;51:91–111. doi: 10.1146/annurev.ento.51.110104.151039 16332205

5. Bertaccini A. Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci. 2007;12:673–89. doi: 10.2741/2092 17127328

6. Hogenhout SA, Oshima K, Ammar el D, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol. 2008;9(4):403–23. doi: 10.1111/j.1364-3703.2008.00472.x 18705857

7. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol. 2011;49:175–95. doi: 10.1146/annurev-phyto-072910-095323 21838574

8. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A. 2011;108(48):E1254–63. doi: 10.1073/pnas.1105664108 22065743

9. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, et al. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol. 2014;12(4):e1001835. doi: 10.1371/journal.pbio.1001835 24714165

10. Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, et al. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. J Exp Bot. 2017;68(11):2799–811. doi: 10.1093/jxb/erx158 28505304

11. Sugio A, MacLean AM, Hogenhout SA. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014;202(3):838–48. doi: 10.1111/nph.12721 24552625

12. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, et al. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 2011;157(2):831–41. doi: 10.1104/pp.111.181586 21849514

13. Orlovskis Z, Hogenhout SA. A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Front Plant Sci. 2016;7:885. doi: 10.3389/fpls.2016.00885 27446117

14. Janik K, Mithofer A, Raffeiner M, Stellmach H, Hause B, Schlink K. An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma? Mol Plant Pathol. 2017;18(3):435–42. doi: 10.1111/mpp.12409 27037957

15. Chang SH, Tan CM, Wu CT, Lin TH, Jiang SY, Liu RC, et al. Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. J Exp Bot. 2018;69(22):5389–401. doi: 10.1093/jxb/ery318 30165491

16. Wang N, Yang H, Yin Z, Liu W, Sun L, Wu Y. Phytoplasma effector SWP1 induces witches' broom symptom by destabilizing the TCP transcription factor BRANCHED1. Mol Plant Pathol. 2018;19(12):2623–34. doi: 10.1111/mpp.12733 30047227

17. Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV, et al. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol. 2006;188(10):3682–96. doi: 10.1128/JB.188.10.3682-3696.2006 16672622

18. Toruño TY, Music MS, Simi S, Nicolaisen M, Hogenhout SA. Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Mol Microbiol. 2010;77(6):1406–15. doi: 10.1111/j.1365-2958.2010.07296.x 20662777

19. Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH. Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One. 2013;8(4):e62770. doi: 10.1371/journal.pone.0062770 23626855

20. Ku C, Lo WS, Kuo CH. Horizontal transfer of potential mobile units in phytoplasmas. Mob Genet Elements. 2013;3(5):e26145. doi: 10.4161/mge.26145 24251068

21. Lee IM, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemuller E. 'Candidatus Phytoplasma asteris', a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol. 2004;54(Pt 4):1037–48. doi: 10.1099/ijs.0.02843-0 15280267

22. Sugio A, Hogenhout SA. The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol. 2012;15(3):247–54. doi: 10.1016/j.mib.2012.04.002 22542641

23. Nault LR, Delong DM. Evidence for co-evolution of leafhoppers in the genus Dalbulus (Cicadellidae: Homoptera) with maize and its ancestors. Annals of the Entomological Society of America. 1980;73(4):349–53.

24. Orlovskis Z, Canale MC, Haryono M, Lopes JRS, Kuo CH, Hogenhout SA. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Ann Bot. 2017;119(5):869–84. doi: 10.1093/aob/mcw213 28069632

25. Gonzalez JG, Jaramillo MG, Lopes JRS. Undetected infection by maize bushy stunt phytoplasma enhances host-plant preference to Dalbulus maidis (Hemiptera: Cicadellidae). Environmental entomology. 2018;47(2):396–402. doi: 10.1093/ee/nvy001 29438484

26. Navaud O, Dabos P, Carnus E, Tremousaygue D, Herve C. TCP transcription factors predate the emergence of land plants. J Mol Evol. 2007;65(1):23–33. doi: 10.1007/s00239-006-0174-z 17568984

27. Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant journal: for cell and molecular biology. 1999;18(2):215–22.

28. Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell. 2010;22(4):1174–89. doi: 10.1105/tpc.109.066647 20363772

29. Martin-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2009;15(1):31–9. doi: 10.1016/j.tplants.2009.11.003 19963426

30. Howarth DG, Donoghue MJ. Duplications in Cys-like genes from Dipsacales correlate with floral form. Int J Plant Sci. 2005;166(3):357–70.

31. Efroni I, Blum E, Goldshmidt A, Eshed Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell. 2008;20(9):2293–306. doi: 10.1105/tpc.107.057521 18805992

32. Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF. Repression of cell proliferation by miR319-regulated TCP4. Mol Plant. 2014;7(10):1533–44. doi: 10.1093/mp/ssu084 25053833

33. Nicolas M, Cubas P. The role of TCP transcription factors in shaping flower structure, leaf morphology, and plant architecture. 2015:249–67.

34. Vadde BVL, Challa KR, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. The Plant journal: for cell and molecular biology. 2018;93(2):259–69.

35. Aguilar-Martinez JA, Poza-Carrion C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 2007;19(2):458–72. doi: 10.1105/tpc.106.048934 17307924

36. Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell. 2007;19(2):473–84. doi: 10.1105/tpc.106.044792 17307931

37. Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell. 2013;25(3):834–50. doi: 10.1105/tpc.112.108480 23524661

38. Yang Y, Nicolas M, Zhang J, Yu H, Guo D, Yuan R, et al. The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis. PLoS Genet. 2018;14(3):e1007296. doi: 10.1371/journal.pgen.1007296 29570704

39. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. Control of organ asymmetry in flowers of Antirrhinum. Cell. 1999;99(4):367–76. doi: 10.1016/s0092-8674(00)81523-8 10571179

40. Doebley J., Stec A, Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995;141:333–46. 8536981

41. Studer AJ, Wang H, Doebley JF. Selection during maize domestication targeted a gene network controlling plant and inflorescence architecture. Genetics. 2017;207(2):755–65. doi: 10.1534/genetics.117.300071 28754660

42. Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 2009;10:202. doi: 10.1186/1471-2105-10-202 19563654

43. Lu YT, Li MY, Cheng KT, Tan CM, Su LW, Lin WY, et al. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol. 2014;164(3):1456–69. doi: 10.1104/pp.113.229740 24464367

44. Burdo B, Gray J, Goetting-Minesky MP, Wittler B, Hunt M, Li T, et al. The Maize TFome—development of a transcription factor open reading frame collection for functional genomics. The Plant journal: for cell and molecular biology. 2014;80(2):356–66.

45. Yilmaz A, Nishiyama MY Jr., Fuentes BG, Souza GM, Janies D, Gray J, et al. GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol. 2009;149(1):171–80. doi: 10.1104/pp.108.128579 18987217

46. Bai F, Reinheimer R, Durantini D, Kellogg EA, Schmidt RJ. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proc Natl Acad Sci U S A. 2012;109(30):12225–30. doi: 10.1073/pnas.1202439109 22773815

47. Chai W, Jiang P, Huang G, Jiang H, Li X. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize. Physiol Mol Biol Plants. 2017;23(4):779–91. doi: 10.1007/s12298-017-0476-1 29158628

48. Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics. 2002;162(4):1927–35. 12524360

49. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011;7(11):e1002383. doi: 10.1371/journal.pgen.1002383 22125498

50. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A. 2009; 106(15):6416–21. doi: 10.1073/pnas.0813038106 19329488

51. Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. The Plant Journal. 2014;81(4):559–71.

52. Finlayson SA. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant Cell Physiol. 2007;48(5):667–77. doi: 10.1093/pcp/pcm044 17452340

53. Dong Z, Li W, Unger-Wallace E, Yang J, Vollbrecht E, Chuck G. Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc Natl Acad Sci U S A. 2017;114(41):E8656–e64. doi: 10.1073/pnas.1714960114 28973898

54. Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancon C, Immink RG, Cubas P. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci U S A. 2017;114(2):E245–E54. doi: 10.1073/pnas.1613199114 28028241

55. Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, et al. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell. 2013;25(4):1228–42. doi: 10.1105/tpc.112.109090 23613197

56. Niwa M, Endo M, Araki T. Florigen is involved in axillary bud development at multiple stages in Arabidopsis. Plant signaling & behavior. 2013;8(11):e27167.

57. Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, et al. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. The Plant journal: for cell and molecular biology. 2014;78(4):541–54.

58. Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, et al. Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant signaling & behavior. 2015;10(8):e1042635.

59. Palatnik JF, Edwards A, Wu X, Schommer C, Schwab R, Carrington JC, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003;425. doi: 10.1038/nature01639

60. Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008;6(9):e230. doi: 10.1371/journal.pbio.0060230 18816164

61. Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant journal: for cell and molecular biology. 2011;67(4):595–607.

62. Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012;159(4):1511–23. doi: 10.1104/pp.112.200303 22718775

63. Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, et al. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Mol Plant. 2016;9(9):1302–14. doi: 10.1016/j.molp.2016.06.014 27381440

64. Yang L, Teixeira PJ, Biswas S, Finkel OM, He Y, Salas-Gonzalez I, et al. Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host Microbe. 2017;21(2):156–68. doi: 10.1016/j.chom.2017.01.003 28132837

65. Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, Regulski M, et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun. 2018;9(1):822. doi: 10.1038/s41467-018-03238-4 29483511

66. Nakagawa T, Ishiguro S, Kimura T. Gateway vectors for plant transformation. Plant Biotech. 2009:275–84.

67. Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. The Plant journal: for cell and molecular biology. 2010;64(2):355–65.

68. Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72. doi: 10.1038/nprot.2007.199 17585298

69. Rossignol P, Collier S, Bush M, Shaw P, Doonan JH. Arabidopsis POT1A interacts with TERT-V(I8), an N-terminal splicing variant of telomerase. J Cell Sci. 2007;120(Pt 20):3678–87. doi: 10.1242/jcs.004119 17911168

70. Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, Bethke G, et al. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. New Phytol. 2014;203(2):592–606. doi: 10.1111/nph.12817 24750137

71. Logemann E, Birkenbihl RP, Ulker B, Somssich IE. An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods. 2006;2:16. doi: 10.1186/1746-4811-2-16 17062132

72. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Agri- cultural Experimental Station Circular 1950;347:1–39.

73. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome biology. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36 23618408

74. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.

75. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 25516281

76. Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? Journal of Classification. 2014;31:274–95.

77. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology. 2011;29(7):644–52. doi: 10.1038/nbt.1883 21572440

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2019 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#