Low HDL-cholesterol: How it actually is?
Authors:
Martin Šatný; Michal Vrablík
Authors place of work:
Centrum preventivní kardiologie, III. interní klinika – endokrinologie a metabolismu 1. LF UK a VFN v Praze
Published in the journal:
AtheroRev 2021; 6(3): 147-152
Category:
Reviews
Summary
The causal role of LDL-cholesterol (LDL-C) in the genesis and progression of atherosclerotic vascular lesions is completely indisputable and supported by robust evidence from a number of clinical studies. The role of HDL-cholesterol or HDL particles is plagued by a number of controversies, in which HDL-C ceases to be generally considered atheroprotective, i.e. “good cholesterol”. Recent data suggest that only in individuals without a history of overt atherosclerotic cardiovascular (CV) disease (CVD) low HDL-C levels are indirectly associated with the risk of future CV events. However, this relationship certainly does not apply to patients with metabolic syndrome or overt atheroslerotic CVD. It is crucial to be aware of the difference between HDL-C and HDL particles, which as such perform a number of functions. The measurement of HDL-C often loses its significance, as it does not give us any information about the quality of HDL-particles, which is absolutely crucial in the context of their atherogenicity or atheroprotection. Thus, HDL-C plays a somewhat ambiguous role in the assessment of CV risk and is increasingly being debated its clinical use. Rather, the detection of low HDL-C should lead to the investigation of other metabolic or inflammatory pathological conditions. The pillar of therapy of low HDL-C levels consists of regimen measures – smoking cessation, regular physical activity; pharmacotherapy is not recommended.
Keywords:
LDL-cholesterol – CV risk – atherosclerotic CVD – HDL-cholesterol – regimen measures
Zdroje
- März W, Kleber ME, Scharnagl H et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol 2017; 106(9): 663–675. Dostupné z: DOI: <http://dx.doi.org/10.1007/s00392–017–1106–1>.
- van der Steeg WA, Holme I, Boekholdt SM et al. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol 2008; 51(6): 634–642. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2007.09.060>.
- Bowe B, Xie Y, Xian H et al. High density lipoprotein cholesterol and the risk of all-cause mortality among US Veterans. Clin J Am Soc Nephrol 2016; 11(10): 1784–1793. Dostupné z: DOI: <http://dx.doi.org/10.2215/CJN.00730116>.
- Bartlett J, Predazzi IM, Williams SM et al. Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham offspring study. Circ Cardiovasc Qual Outcomes 2016; 9(3): 206–212. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCOUTCOMES.115.002436>.
- Mach F, Baigent C, Catapano AL et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111–188. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehz455>.
- Toth PP, Barylski M, Nikolic D et al. Should be low high-density lipoprotein cholesterol (HDL-C) treated? Best Pract Res Clin Endocrinol Metab 2014; 28(3): 353–368. Dostupné z DOI: <http://dx.doi.org/10.1016/j.beem.2013.11.002>.
- Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 2014; 289(35): 24020–24029. Dostupné z: DOI: <http://dx.doi.org/10.1074/jbc.R114.583658>.
- Bodzioch M, Orso E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22(4):347–351. Dostupné z: DOI: <http://dx.doi.org/10.1038/11914.>.
- Rust S, Rosier M, Funke H et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999; 22(4):352–355. Dostupné z: DOI: <http://dx.doi.org/10.1038/11921>.
- Quintao EC, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2010; 209(1):1–9. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.002>.
- Kaess B, Fischer M, Baessler A et al. The lipoprotein subfraction profile: heritability and identification of quantitative trait loci. J Lipid Res 2008; 49(4): 715–723. Dostupné z: DOI: <http://dx.doi.org/10.1194/jlr.M700338-JLR200>.
- Khera AV, Cuchel M, de la Llera-Moya M et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364(2): 127–135. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa1001689>.
- Rohatgi A, Khera A, Berry JD et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371(25): 2383–2393. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa1409065>.
- Ritsch A, Scharnagl H, Marz W. HDL cholesterol efflux capacity and cardiovascular events. N Engl J Med 2014; 372(19): 1870–1871. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMc1503139>.
- März W, Ritsch A. Cholesterol efflux capacity: choke point of reverse cholesterol traffic? J Am Coll Cardiol 2016; 67(21): 2488–2491. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2016.04.005>.
- Schaefer EJ, Santos RD, Asztalos BF. Marked HDL deficiency and premature coronary heart disease. Curr Opin Lipidol 2010; 21(4): 289–297. Dostupné z: DOI: <http://dx.doi.org/10.1097/MOL.0b013e32833c1ef6>.
- von Eckardstein A. Differential diagnosis of familial high density lipoprotein deficiency syndromes. Atherosclerosis 2006; 186(2): 231–239. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2005.10.033>.
- Tietjen I, Hovingh GK, Singaraja R et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. 2012. Biochim Biophys Acta 2012; 1821(3): 416–424. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.bbalip.2011.08.006>.
- Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis 2010; 208(2): 305–316. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.005>.
- Haase CL, Frikke-Schmidt R, Nordestgaard BG et al. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genet 2012; 8(11): e1003063. Dostupné z: DOI: <http://dx.doi.org/10.1371/journal.pgen.1003063>.
- Ritsch A, Scharnagl H, Eller P et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 2010; 121(3): 366–374. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCULATIONAHA.109.875013>.
- Vergeer M, Korporaal SJ, Franssen R et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med 2011; 364(2): 136–145. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa0907687>.
- Ljunggren SA, Levels JH, Hovingh K et al. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim Biophys Acta 2015; 1851(12): 1587–1595. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.bbalip.2015.09.006>.
- Zanoni P, Khetarpal SA, Larach DB et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351(6278): 1166–1171. Dostupné z: DOI: <http://dx.doi.org/10.1126/science.aad3517>.
- Voight BF, Peloso GM, Orho-Melander M et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomization study. Lancet 2012; 380(9841): 572–580. Dostupné z: DOI: <http://dx.doi.org/10.1016/S0140–6736(12)60312–2>.
- Ference BA, Majeed F, Penumetcha R et al. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol 2015; 65(15): 1552–1561. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2015.02.020>.
- Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 2015; 239(2): 483–495. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.039>.
- Šatný M, Vrablík M. Sekundární dyslipidemie. AtheroRev 2017; 2(3): 162–168.
- Jun M, Foote C, Lv J et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010; 375(9729): 1875–1884. Dostupné z: DOI: <http://dx.doi.org/10.1016/S0140–6736(10)60656–3>.
- Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995; 36(2): 211–228.
- Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res 1993; 34(8): 1255–1274.
- Johannsen TH, Frikke-Schmidt R, Schou J et al. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol 2012; 60(20): 2041–2048. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.jacc.2012.07.045>.
- Li YY, Wu XY, Xu J et al. Apo A5 -1131 T/C, FgB – 455G/A, -148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects. Mol Biol Rep 2013; 40(2): 1997–2014. Dostupné z: DOI: <http://dx.doi.org/10.1007/s11033–012–2257–9>.
- Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: Mendelian randomization meta-analysis. Circ Cardiovasc Genet 2015; 8(1): 114–121. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCGENETICS.114.000748>.
- Hovingh GK, Ray KK, Boekholdt SM. Is cholesteryl ester transfer protein inhibition an effective strategy to reduce cardiovascular risk? CETP as a target to lower CVD risk: suspension of disbelief? 2015. Circulation 2015; 132(5):433–440. Dostupné z: DOI: <http://dx.doi.org/10.1161/CIRCGENETICS.114.000748>.
- Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350(15): 1505–1515. Dostupné z: DOI: <http://dx.doi.org/10.1056/NEJMoa031766>.
- Kastelein JJ. Refocusing on use of cholesteryl ester transfer protein inhibitors. Am J Cardiol 2007; 100(11 A): n47-n52. Dostupné z: DOI: <http://dx.doi.org/10.1016/j.amjcard.2007.08.013>.
Štítky
Angiology Diabetology Internal medicine Cardiology General practitioner for adultsČlánok vyšiel v časopise
Athero Review
2021 Číslo 3
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Low HDL-cholesterol: How it actually is?
- Familial hypercholesterolemia: news
- Combination of statin and ezetimibe: most often in only one pill and for more patients
- Genetics of familial hypercholesterolemia: updated criteria for LDLR gene variant interpretation