#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Role of epicardial tissue in pathophysiology of cardiovascular diseases


Authors: F. Souček 1;  J. Novák 2
Authors place of work: I. interní kardioangiologická klinika FN u sv. Anny v Brně 1;  II. interní klinika FN u sv. Anny v Brně 2
Published in the journal: Kardiol Rev Int Med 2018, 20(3): 212-217

Summary

Obesity is a significant risk factor for the development of cardiovascular diseases. Adipose tissue is currently considered to be a metabolically active organ. Rather than subcutaneous adipose tissue, visceral adipose tissue has importance in the pathophysiology of cardiovascular diseases. Due to its proximity to the heart, epicardial adipose tissue (EAT), which has the same embryonic origin as visceral adipose tissue, is currently widely studied for its possible involvement in the pathophysiology of cardiovascular diseases. EAT produces a number of biologically active substances which can affect the adjacent myocardium by paracrine or vasocrine signalling. The most robust evidence is available of the role of EAT in the pathophysiology of atherosclerosis and coronary artery disease. However, the position of EAT in pathophysiology of atrial fibrillation and heart failure is also evident. This review article provides information on current knowledge about the role of EAT in the pathophysiology of cardiovascular diseases and potential therapeutic implications.

Key words:

obesity – cardiovascular risk – epicardial adipose tissue


Zdroje

1. Iacobel­lis G, Cor­radi D, Sharma AM. Epicardial adipose tis­sue: anatomic, bio­molecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2(10): 536–543. doi: 10.1038/ncpcardio0319.

 2. Rosito GA, Mas­saro JM, Hof­fmann U et al. Pericardial fat, visceral abdominal fat, cardiovascular dis­ease risk factors, and vascular calcification in a com­munity-based sample. Circulation 2008; 117(5): 605–613. doi: 10.1161/CIRCULATIONAHA.107.743062.

3. Iacobel­lis G, Wil­lens HJ. Echocardiographic epicardial fat: a review of research and clinical applications: inflam­matory mechanisms and persistence of atrial fibril­lation. J Am Soc Echocardiogr 2009; 22(12): 1311–1319. doi: 10.1016/j.echo.2009.10.013.

4. Sacks HS, Fain JN. Human epicardial adipose tis­sue: A review. Am Heart J 2007; 153(6): 907–917. doi: 10.1016/j.ahj.2007.03.019.

5. Chung MK, Martin DO, Sprecher D et al. C-reactive protein elevation in patients with atrial ar­rhythmias. Circulation 2001; 104(24): 2886–2891.

6. Duncan BB, Schmidt MI, Pankow JS et al. Adiponectin and the development of type 2 diabetes. Diabetes 2004; 53(9): 2473–2478.

7. Baker AR, da Silva NF, Quinn DW et al. Human epicardial adipose tis­sue expres­ses a pathogenic profile of adipocytokines in patients with cardiovascular dis­ease. Cardiovasc Diabetol 2006; 5: 1–1. doi: 10.1186/1475-2840-5-1.

8. Iacobel­lis G, Pistil­li D, Gucciardo M et al. Adiponectin expres­sion in human epicardial adipose tis­sue in vivo is lower in patients with coronary artery dis­ease. Cytokine 2005; 29(6): 251–255. doi: 10.1016/j.cyto.2004.11.002.

 9. Jain SH, Mas­saro JM, Hof­fmann U et al. Cros­s-sectional as­sociations bet ween abdominal and thoracic adipose tis­sue compartments and adiponectin and resistin in the framingham heart study. Diabetes Care 2009; 32(5): 903–908. doi: 10.2337/dc08-1733.

10. Schäf­fler A, Schölmerich J. In­nate im­munity and adipose tis­sue bio­logy. Trends Im­munol 2010; 31(6): 228–235. doi: 10.1016/j.it.2010.03.001.

11. Prati F, Arbustini E, Label­larte A et al. Eccentric atherosclerotic plaques with positive remodel­l­­ing have a pericardial distribution: a permis­sive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descend­­ing artery lesions. Eur Heart J 2003; 24(4): 329–336.

12. Sacks HS, Fain JN, Cheema P et al. Inflam­matory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes as­sociated with pioglitazone. Diabetes Care 2011; 34(3): 730–733. doi: 10.2337/dc10-2083.

13. Pezeshkian M, Noori M, Najjarpour-Jabbari H et al. Fatty acid composition of epicardial and subcutaneous human adipose tis­sue. Metab Syndr Relat Disord 2009; 7(2): 125–131.

14. Yao X, Shan S, Zhang Y et al. Recent progress in the study of brown adipose tis­sue. Cell Biosci 2011; 1: 35. doi: 10.1186/2045-3701-1-35.

15. Sacks HS, Fain JN, Holman B et al. Uncoupl­­ing protein-1 and related mes­senger ribonucleic acids in human epicardial and other adipose tis­sues: epicardial fat function­­ing as brown fat. J Clin Endocrinol Metab 2009; 94(9): 3611–3615. doi: 10.1210/jc.2009-0571.

16. Sicari R, Sironi AM, Petz R et al. Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study. J Am Soc Echocardiogr 2011; 24(10): 1156–1162. doi: 10.1016/j.echo.2011.06.013.

17. Fox CS, Gona P, Hof­fmann U et al. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 2009; 119(12): 1586–1591. doi: 10.1161/CIRCULATIONAHA.108.828970.

18. Djaberi R, Schuijf JD, van Werkhoven JM et al. Relation of Epicardial Adipose Tis­sue to Coronary Atherosclerosis. Am J Cardiol 2008; 102(12): 1602–1607. doi: 10.1016/j.amjcard.2008.08.010.

19. Wang TD, Lee WJ, Shih FY et al. Relations of epicardial adipose tis­sue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab 2009; 94(2): 662–669. doi: 10.1210/jc.2008-0834.

20. Mazurek T, Zhang L, Zalewski A et al. Human epicardial adipose tis­sue is a source of inflam­matory mediators. Circulation 2003; 108(20): 2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5.

21. Hartman J, Frishman WH. Inflam­mation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug ther­apy. Cardiol Rev 2014; 22(3): 147–151. doi: 10.1097/CRD.0000000000000021.

22. Iwayama T, Nitobe J, Watanabe T et al. The role of epicardial adipose tis­sue in coronary artery dis­ease in non-obese patients. J Cardiol 2014; 63(5): 344–349. doi: 10.1016/j.jjcc.2013.10.002.

23. Pierdomenico SD, Pierdomenico AM, Cuccu­rul­lo F et al. Meta-analysis of the relation of echocardiographic epicardial adipose tis­sue thickness and the metabolic syndrome. Am J Cardiol 2013; 111(1): 73–78. doi: 10.1016/j.amjcard.2012.08.044.

24. Yer­ramasu A, Dey D, Venuraju S et al. Increased volume of epicardial fat is an independent risk factor for accelerated progres­sion of sub-clinical coronary atherosclerosis. Atherosclerosis 2012; 220(1): 223–230. doi: 10.1016/j.atherosclerosis.2011.09.041.

25. Wang TD, Lee WJ, Shih FY et al. As­sociation of epicardial adipose tis­sue with coronary atherosclerosis is region-specific and independent of conventional risk factors and intra-abdominal adiposity. Atherosclerosis 2010; 213(1): 279–287. doi: 10.1016/j.atherosclerosis.2010.07.055.

26. D­­ing J, Hsu FC, Har­ris TB et al. The as­sociation of pericardial fat with incident coronary heart dis­ease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2009; 90(3): 499–504. doi: 10.3945/ajcn.2008.27358.

27. Ito T, Nasu K, Terashima M et al. The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imag­­ing 2012; 13(5): 408–415. doi: 10.1093/ehjci/jes022.

28. Schlett CL, Ferencik M, Kriegel MF et al. As­sociation of pericardial fat and coronary high-risk lesions as determined by cardiac CT. Atherosclerosis 2012; 222(1): 129–134. doi: 10.1016/j.atherosclerosis.2012.02.029.

29. Sade LE, Eroglu S, Bozbaş H et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographical­ly normal coronary arteries. Atherosclerosis 2009; 204(2): 580–505. doi: 10.1016/j.atherosclerosis.2008.09.038.

30. Hajsadeghi F, Nabavi V, Bhandari A et al. Increased epicardial adipose tis­sue is as­sociated with coronary artery dis­ease and major adverse cardiovascular events. Atherosclerosis 2014; 237(2): 486–489. doi: 10.1016/j.atherosclerosis.2014.09.037.

31. Wang TJ, Parise H, Levy D et al. Obesity and the risk of new-onset atrial fibril­lation. JAMA 2004; 292(20): 2471–2477. doi: 10.1001/jama.292.20.2471.

32. Fox CS, Mas­saro JM, Hof­fmann U et al. Abdominal visceral and subcutaneous adipose tis­sue compartments: as­sociation with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116(1): 39–48. doi: 10.1161/CIRCULATIONAHA.106.675355.

33. Wong CX, Sun MT, Odutayo A et al. As­sociations of epicardial, abdominal, and over­all adiposity with atrial fibril­lation. Circ Ar­rhythm Electrophysiol 2016; 9(12): pii: e004378. doi: 10.1161/CIRCEP.116.004378.

34. Chen PS, Chen LS, Fishbein MC et al. Role of the autonomic nervous system in atrial fibril­lation: pathophysiology and ther­apy. Circ Res 2014; 114(9): 1500–1515. doi: 10.1161/CIRCRESAHA.114.303772.

35. Frustaci A, Chimenti C, Bel­locci F et al. Histological substrate of atrial biopsies in patients with lone atrial fibril­lation. Circulation 1997; 96(4): 1180–1184.

36. Aviles RJ, Martin DO, Apperson-Hansen C et al. Inflam­mation as a risk factor for atrial fibril­lation. Circulation 2003; 108(24): 3006–3010. doi: 10.1161/01.CIR.0000103131.70301.4F.

37. Malouf JF, Kanagala R, Al Atawi FO et al. High sensitivity c-reactive protein: a novel predictor for recur­rence of atrial fibril­lation after succes­sful cardioversion. J Am Coll Cardiol 2005; 46(7): 1284–1287. doi: 10.1016/j.jacc.2005.06.053.

38. Venteclef N, Guglielmi V, Balse E et al. Human epicardial adipose tis­sue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 2015; 36(13): 795–805. doi: 10.1093/eurheartj/eht099.

39. Boixel C, Fontaine V, Rücker-Martin C et al. Fibrosis of the left atria dur­­ing progres­sion of heart failure is as­sociated with increased matrix metal­lopro­teinases in the rat. J Am Coll Cardiol 2003; 42(2): 336–344. doi: 10.1016/S0735-1097(03)00578-3.

40. Iacobel­lis G, Leonetti F, Singh N et al. Relationship of epicardial adipose tis­sue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 2007; 115(2): 272–273. doi: 10.1016/j.ijcard.2006.04.016.

41. Wong CX, Stiles MK, John B et al. Direction-dependent conduction in lone atrial fibril­lation. Heart Rhythm 2010; 7(9): 1192–1199. doi: 10.1093/europace/eur42842.

42. Mahajan R, Lau DH, Brooks AG et al. Electrophysiological, electroanatomical, and structural remodel­­ing of the atria as consequences of sustained obesity. J Am Coll Cardiol 2015; 66(1): 1–11. doi: 10.1016/j.jacc.2015.04.058.

43. Nakahara S, Toratani N, Nakamura H et al. Spatial relationship between high-dominant-frequency sites and the linear ablation line in persistent atrial fibril­lation: its impact on complex fractionated electrograms. Europace 2013; 15(2): 189–197. doi: 10.1093/europace/eus290.

44. Nakagawa H, Scherlag BJ, Patterson E et al. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibril­lation. Hear Rythm 2009; 6 (12 Suppl): S26–S34. doi: 10.1016/j.hrthm.2009.07.029.

45. Pokushalov E, Kozlov B, Romanov A et al. Long-term suppres­sion of atrial fibril­lation by botulinum toxin injection into epicardial fat pads in patients undergo­­ing cardiac surgery. Circ Ar­rhythm Electrophysiol 2015; 8(6): 1334–1341. doi: 10.1161/CIRCEP.115.003199.

46. Khawaja T, Greer C, Chokshi A et al. Epicardial fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol 2011; 108(3): 397–401. doi: 10.1016/j.amjcard.2011.03.058.

47. Doesch C, Haghi D, Flüchter S et al. Epicardial adipose tis­sue in patients with heart fail­ure. J Cardiovasc Magn Reson 2010; 12: 40. doi: 10.1186/1532-429X-12-40.

48. Tabakci MM, Durmuş Hİ, Avci A et al. Relation of epicardial fat thickness to the severity of heart fail­ure in patients with nonischemic dilated cardiomyopathy. Echocardiography 2015; 32(5): 740–748. doi: 10.1111/echo.12796.

49. Mookadam F, Goel R, Alharthi MS et al. Epicardial fat and its as­sociation with cardiovascular risk: a cros­s-sectional observational study. Heart Views 2010; 11(3): 103–108. doi: 10.4103/1995-705X.76801.

50. Karayan­nis G, Giamouzis G, Tziolas N et al. As­sociation between epicardial fat thickness and weight homeostasis hormones in patients with noncachectic heart failure. Angiology 2013; 64(3): 173–180. doi: 10.1177/0003319712447978.

51. Nagaya N, Moriya J, Yasumura Y et al. Ef­fects of ghrelin administration on left ventricular function, exercise capacity, and muscle wast­­ing in patients with chronic heart failure. Circulation 2004; 110(24): 3674–3679. doi: 10.1161/01.CIR.0000149746.62908.BB.

52. Papotti M, Ghè C, Cas­soni P et al. Growth hormone secretagogue bind­­ing sites in peripheral human tis­sues. J Clin Endocrinol Metab 2000; 85(10): 3803–3807. doi: 10.1210/jcem.85.10.6846.

53. Iacobel­lis G, Singh N, Wharton S et al. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 2008; 16(7): 1693–1697. doi: 10.1038/oby.2008.251.

54. Gaborit B, Jacquier A, Kober F et al. Ef­fects of bariatric surgery on cardiac ectopic fat: les­ser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol 2012; 60(15): 1381–1389. doi: 10.1016/j.jacc.2012.06.016.

55. Park JH, Park YS, Kim YJ et al. Ef­fects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J Cardiovasc Ultrasound 2010; 18(4): 121–126. doi: 10.4250/jcu.2010.18.4.121.

56. Soucek F, Covas­sin N, Singh P et al. Ef­fects of atorvastatin (80mg) ther­apy on quantity of epicardial adipose tis­sue in patients undergo­­ing pulmonary vein isolation for atrial fibril­lation. Am J Cardiol 2015; 116(9): 1443–1446. doi: 10.1016/j.amjcard.2015.07.067.

57. Jonker JT, Lamb HJ, van der Meer RW et al. Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mel­litus. J Clin Endocrinol Metab 2010; 95(1): 456–460. doi: 10.1210/jc.2009-1441.

58. Lima-Martínez MM, Paoli M, Rodney M et al. Ef­fect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine 216; 51(3): 448–455. doi: 10.1007/s12020-015-0710-y.

59. Morano S, Romagnoli E, Filardi T et al. Short-term ef­fects of glucagon-like peptide 1 (GLP-1) receptor agonists on fat distribution in patients with type 2 diabetes mel­litus: an ultrasonography study. Acta Diabetol 2015; 52(4): 727–732. doi: 10.1007/s00592-014-0710-z.

Štítky
Paediatric cardiology Internal medicine Cardiac surgery Cardiology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#