#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biological effects of carbon monoxide


Authors: J. Šuk;  L. Muchová
Authors‘ workplace: Laboratoř pro výzkum nemocí jater a metabolismu hemu, Centrální výzkumné laboratoře, Ústav lékařské, biochemie a laboratorní diagnostiky, 1. lékařská fakulta Univerzity Karlovy, Praha
Published in: Klin. Biochem. Metab., 26, 2018, No. 4, p. 151-156

Overview

Carbon monoxide (CO) is mostly known as a life-threatening product of incomplete combustion of organic compounds with high affinity to hemoglobin. However, CO is also produced endogenously in very low concentrations during heme degradation. Recent studies have clearly shown that CO plays a role, similarly as nitric oxide or sulfane, as an important signaling molecule regulating numerous physiologic and pathophysiologic processes in the organism and thus could be used therapeutically. Inhalation of CO has its limitations, and that is why there is an effort to develop alternative ways of CO delivery to the target tissues. One of the options are carbon monoxide releasing molecules, CORMs. This review is focused on possibilities to use CO in therapy of inflammation and liver diseases.

Keywords:

carbon monoxide, inflammation, liver, CORM.


Sources

1. Ryter, S. W., Otterbein, L. E. Carbon monoxide in bio-logy and medicine. Bioessays, 2004, vol. 26, p. 270–280.

2. WHO | Environmental Health Criteria 213: Carbon Monoxide (second edition). WHO | World Health Organization [online]. Copyright © [cit. 04.07.2018]. Dostupné z: http://www.who.int/ipcs/publications/ehc/ehc_213/en/

3. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., Snyder, S. H. Carbon monoxide: aputative neural messenger. Science, 1993, vol. 259, no. 5093, p. 381–384.

4. Sjöstrand, T. Endogenous Formation of Carbon Mono-xide in Man Under Normal and Pathological Conditions. Scand. J. Clin. Lab. Invest., 1949, vol. 1, no. 3, p. 201–214.

5. Tenhunen, R., Marver, H. S., Schmid, R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. U.S.A., 1968, vol. 61, no. 2, p. 748–755.

6. Maines, M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J., 1988, vol. 2, no. 10, p. 2557–2568.

7. Ryter, S. W., Alam, J., Choi, A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev., 2006, vol. 86, no. 2, p. 583–650.

8. Szabo, C. Gasotransmitters in cancer: from pathophysio-logy to experimental therapy. Nat. Rev. Drug Discov., 2016, vol. 15, no. 3, p. 185–203.

9. Chance, B., Erecinska, M., Wagner, M. Mitochondrial responses to carbon monoxide toxicity. Ann. N.Y. Acad. Sci., 1970, vol. 174, no. 1, p. 193–204.

10. Hansson, G. K. Inflammation, atherosclerosis, and coro-nary artery disease. N. Engl. J. Med., 2005, vol. 352, no. 16, p. 1685–1695.

11. Willis, D., Moore, A. R., Frederick, R., Willoughby, D. A. Heme oxygenase: anovel target for the modulation of inflammatory response. Nat. Med., 1996, vol. 2, no. 1, p. 87–91.

12. Otterbein, L. E., Bach, F. H., Alam, J. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med., 2000, vol. 6, no. 4, p. 422–430.

13. Otterbein, L. E. Carbon monoxide: innovative anti-inflammatory properties of an age-old gas molecule. Antioxid. Redox Signal., 2002, vol. 4, no. 2, p. 309–319.

14. Qin, S., Du, R., Yin, S., Liu, X., Xu, G., Cao, W. Nrf2 is essential for the anti-inflammatory effect of carbon monoxide in LPS-induced inflammation. Inflamm. Res., 2015, vol. 64, no. 7, p. 537–548.

15. Bach, J. F. Regulatory lymphocytes: regulatory T cells under scrutiny. Nat. Rev. Immunol., 2003, vol. 3, no. 3, p. 189–195.

16. Xia, Z. W., Xu, L., Zhong, W. W. et al. Heme oxyge-nase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of Foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-β1. Am. J. Pathol., 2007, vol. 171, no. 6, p. 1904–1914.

17. Sheikh, S. Z., Hegazi, R. A., Kobayashi, T. et al. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J. Immunol., 2011, vol. 186, no. 9, p. 5506–5513.

18. Suematsu, M., Goda, N., Sano, T. et al. Carbon mo-noxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J. Clin. Invest., 1995, vol. 96, no. 5, p. 2431–2437.

19. Suematsu, M., Kashiwagi, S., Sano, T., Goda, N., Shinoda, Y., Ishimura, Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem. Biophys. Res. Commun., 1994, vol. 205, no. 2, p. 1333–1337.

20. Suematsu, M., Ishimura, Y. The heme oxygenase–carbon monoxide system: uregulator of hepatobiliary function. Hepatology, 2000, vol. 31, no. 1, p. 3–6.

21. Norimizu, S., Kudo, A., Kajimura, M. et al. Carbon monoxide stimulates mrp2-dependent excretion of bilirubin-IXα into bile in the perfused rat liver. Antioxid. Redox Signal., 2003, vol. 5, no. 4, p. 449–456.

22. Bilzer, M., Roggel, F., Gerbes, A. L. Role of Kupffer cells in host defense and liver disease. Liver Int., 2006, vol. 26, no. 10, p. 117–1186.

23. Vanova, K., Suk, J., Petr, T. et al. Protective effects of inhaled carbon monoxide in endotoxin-induced cholestasis is dependent on its kinetics. Biochimie, 2014, vol. 97, p. 173–180.

24. Kim, H. J., Joe, Y., Kim, S. K. et al. Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2α-ATF4 pathway. Free Radic. Biol. Med., 2017, vol. 110, p. 81–91.

25. Joe, Y., Kim, S. K., Kim, H. J. et al. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway. FASEB J., 2018, vol. 32, no. 5, p. 2630–2643.

26. Motterlini, R., Clark, J. E., ForesiI, R., Sarathchandra, P., Mann, B. E., Grenn, C. J. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res., 2002, vol. 90, p. 17–24.

27. Clark, J. E., Naughton, P., Shurey, S. et al. Cardioprotective actions by awater soluble carbon monoxide-releasing molecule. Circ. Res., 2003, vol. 93, p. 2–8.

28. Motterlini, R., Sawle, P., Hammad, J. et al. CORM A1: anew pharmacologically active carbon monoxide-releasing molecule. FASEB J., 2005, vol. 19, p. 284–286.

29. Bannenberg, G. L., Vieira, H. L. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin. Ther. Pat., 2009, vol. 19, p. 663–682.

30. Palao, E., Slanina, T., Muchová, L., Šolomek, T., Vítek, L., Klán P. Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. J. Am. Chem. Soc., 2015, vol. 138, no. 1, p. 126–133.

31. Popova, M., Soboleva, T., Arif, A. M., Berreau, L. M. Properties of aflavonol-based photoCORM in aqueous buffered solutions: influence of metal ions, surfactants and proteins on visible light-induced CO release. RSC Advances, 2017, vol. 7, no. 36, p. 21997–22007.

32. Suk, J., Jasprova, J., Bidermann, D. et al. Milk thistle natural polyphenols increase systemic as well as hepatic concentrations of bilirubin and decrease hepatic lipope-roxidation in mice. In Hepatology, 68th Annual Meeting of the American-Association-for-the-Study-of-Liver-Disea-ses (AASLD) / Liver Meeting; Ed.; 2017; pp 231A–231A.

33. Nakao, A., Choi, A. M., Murase, N.Protective effect of carbon monoxide in transplantation. J. Cell. Mol. Med., 2006, vol. 10, no. 3, p. 650–671.

34. Mayr, F. B., Spiel, A., Leitner, J. et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am. J. Respir. Crit. Care Med., 2006, vol. 171, p. 354–360.

35. Bathoorn, E., Slebos, D. J., Postma, D. S. et al. Anti-inflammatory effects of inhaled carbon monoxide in 799 patients with COPD: apilot study. Eur. Respir. J., 2007, vol. 30, p. 1131–1137.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#