Proteomic Analysis of Cancer Cells
Authors:
A. Tomancová 1; O. Šedo 2; Z. Zdráhal 2; J. Mayer 1; Š. Pospíšilová 1
Authors place of work:
Centrum molekulární biologie a genové terapie, Interní hematoonkologická klinika, Lékařská fakulta MU a FN Brno 2Oddělení funkční genomiky a proteomiky, Ústav experimentální biologie, Přírodovědecká fakulta MU Brno
1
Published in the journal:
Klin Onkol 2009; 22(5): 210-217
Category:
Reviews
Summary
The rapid development of analytical instrumentation and methodical approaches in the course of the last two decades has significantly extended the possibilities of studying proteins in living systems. Proteomic analysis provides ever deeper insights into the molecular nature of biological processes in terms of qualitative and quantitative changes in protein composition in connection with the physiological and pathological states of the organism. Thus, proteomic analysis contributes to a better understanding of these processes and becomes a tool for the development and validation of diagnostic and therapeutic approaches. Thanks to recent achievements, the attention of cancer specialists is more and more focused on human proteome research. In this brief review we explain the principles of widely used proteomic techniques (gel electrophoresis, liquid chromatography, mass spectrometry analysis, protein array technologies) and show examples of their application in oncology, namely hematooncological diseases.
Key words:
proteomics – proteins – oncology – hematology
Zdroje
1. Trifonov EN. Earliest pages of bioinformatics. Bioinformatics 2000; 16(1): 5–9. Review.
2. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001 16; 291(5507): 1304–51. Erratum in: Science 2001; 292(5523): 1838.
3. Wasinger VC, Cordwell SJ, Wilkins M et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995; 16(7): 1090–1094.
4. Matt P, Carrel T, White M et al. Proteomics in cardiovascular surgery. J Thorac Cardiovasc Surg 2007; 133(1): 210–214.
5. Wu W, Hu W a Kavanagh JJ. Proteomics in cancer research. Int J Gynecol Cancer 2002; 12: 409–423.
6. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005; 44(45): 7342–7372.
7. Han KK, Martinage A. Post translational chemical modification(s) of proteins. Int J Biochem 1992; 24(1): 19–28. Review.
8. Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology. Blood 2004; 103(10): 3624–3634.
9. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312: 221–217.
10. Righetti PG. Bioanalysis: its past, present, and some future. Electrophoresis 2004; 25(14): 2111–2127.
11. Görg A, Weiss W, Dunn MJ. Current two dimensional electrophoresis technology for proteomics. Proteomics 2004; 4(12): 3665–3685.
12. Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 2006; 1(4): 1732–1742.
13. Hanash SM, Strahler JR, Kuick R. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem 1988; 263(26): 12813–12815.
14. Cui JW, Wang J, He K et al. Two-dimensional electrophoresis protein profiling as an analytical tool for human acute leukemia classification. Electrophoresis 2005; 26(1): 268–279.
15. López-Pedrera C, Villalba JM, Siendones E et al. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets. Proteomics 2006; 6(1): 293–299.
16. Unlü M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18(11): 2071–2077.
17. Lilley KS. 2D DIGE. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. Part 3. Proteomics 3.2. John Wiley & Sons 2005.
18. Wang H, Clouthier SG, Galchev V et al. Intact-protein based high resolution three-dimensional quantitative analysis system for proteome profiling of biological fluids. Mol Cell Proteomics 2005; 4(5): 618–625.
19. Jiang YJ, Sun Q, Fang XS et al. Comparative mitochondrial proteomic analysis of Rji cells exposed to adriamycin. Mol Med 2009; 15(5–6): 173–182.
20. Henzel WJ, Billeci TM, Stults JT et al. Identifying proteins from 2-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 1993; 90: 5011–5015.
21. Rajcevic U, Niclou SP, Jimenez CR Proteomics strategies for target identification and biomarker discovery in cancer. Front Biosci 2009; 14: 3292–3303.
22. Wu HM, Jin M, Marsh CB. Toward functional proteomics of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2005; 288(4): L585–L595.
23. Traum AZ, Schachter AD. Transplantation proteomics. Pediatr Transplant 2005; 9(6): 700–711.
24. Wiesner A. Detection of tumor markers with ProteinChip technology. Curr Pharm Biotechnol 2004; 5(1): 45–67.
25. Holcakova J, Hernychova L, Bouchal P et al. Identification of alphaB-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers 2008; 23(1): 48–53.
26. Brozkova K, Budinska E, Bouchal P et al. Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression. Breast Cancer Res 2008; 10(3): R48.
27. Zhang X, Guo T, Wang H et al. Potential biomarkers of acute cerebral infarction detected by SELDI-TOF-MS. Am J Clin Pathol 2008; 130(2): 299–304.
28. Hong M, Zhang X, Hu Y et al. The potential biomarkers for thromboembolism detected by SELDI-TOF-MS. Thromb Res 2009; 123(3): 556–564.
29. Delbosc S, Haloui M, Louedec L et al. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 2008; 14(7–8): 383–394.
30. Zhang YQ, Li W, Wang GJ et al. Effect of low dose radiation on human bone marrow mesenchymal stem cells by using proteomic analysis. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008; 16: 151–155.
31. Scholl S, Melle C, Bleul A et al. Specific pattern of protein expression in acute myeloid leukemia harboring FLT3-ITD mutations. Leuk Lymphoma 2007; 48(12): 2418–2423.
32. Liu H, Lin D, Yates JR 3rd. Multidimensional separations for protein/peptide analysis in the post genomic era. Biotechniques 2002; 32(4): 898–902.
33. Sun S, Lee NP, Poon RT et al. Oncoproteomics of hepatocellular carcinoma: from cancer markers‘ discovery to functional pathways. Liver Int 2007; 27(8): 1021–1038.
34. Delahunty CM, Yates JR 3rd. MudPIT: multidimensional protein identification technology. Biotechniques 2007; 43(5): 563–569.
35. Maurya P, Meleady P, Dowling P et al. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res 2007; 27(3A): 1247–1255.
36. McDonald WH, Yates JR 3rd. Shotgun proteomics and biomarker discovery. Dis Markers 2002; 18(2): 99–105.
37. Koch HB, Zhang R, Verdoodt B et al. Large-scale identification of c-MYC associated proteins using a combined TAP/MudPIT approach. Cell Cycle 2007; 6(2): 205–217.
38. Coppinger JA, Cagney G, Toomey S et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103(6): 2096–2104.
39. Gygi SP, Rist B, Aebersold R et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17(10): 994–999.
40. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–247.
41. Han DK, Eng J, Zhou H et al. Quantitative profiling of differentiation induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001; 19: 946–951.
42. Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 2006; 57(7): 1501–1508.
43. Pawlik TM, Hawke DH, Liu Y et al. Proteomic analysis of nipple aspirate fluid from women with early stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer 2006; 6: 68.
44. Shiio Y, Donohoe S, Yi EC et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 2002; 21: 5088–5096.
45. Ong SE, Blagoev B, Mann M et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1(5): 376–386.
46. Ong SE, Foster LJ, Mann M. Mass spectrometric based approaches in quantitative proteomics. Methods 2003; 29(2): 124–130.
47. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 2006; 7(12): 952–958.
48. Sun Y, Mi W, Cai Jet al. Quantitative proteomic signature of liver cancer cells: tissue transglutaminase 2 could be a novel protein candidate of human hepatocellular carcinoma. J Proteome Res 2008; 7(9): 3847–3859.
49. Oveland E, Gjertsen BT, Wergeland L et al. Ligand induced Flt3-downregulation modulates cell death associated proteins and enhances chemosensitivity to idarubicin in THP-1 acute myeloid leukemia cells. Leukemia Research 2009, 33(2): 276–287.
50. Liang X, Hajivandi M, Veach D et al. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 2006; 16(6): 4554–4564.
51. Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3(12): 1154–1169.
52. Gafken PR, Lampe PD. Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun Adhes 2006; 13(5–6): 249–262.
53. Aggarwal K, Choe LH, Lee KH. Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 2006; 5(2): 112–120.
54. Ho J, Kong JW, Choong LY et al. Novel Breast Cancer Metastasis-Associated Proteins. J Proteome Res 2009; 8(2): 583–594.
55. Glen A, Gan CS, Hamdy FC et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res 2008; 7(3): 897–907.
56. Chen Y, Choong LY, Lin Q et al. Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteomics 2007; 6(12): 2072–2087.
57. Collinsová M, Jiráček J. Current Development in Proteomics. Chem Listy 2004; 98: 1112–1118.
58. Ekins R, Chu F, Biggart E. Multispot, multianalyte, immunoassay. Ann Biol Clin (Paris) 1990; 48(9): 655–666.
59. Malčíková J, Tichý B, Kotašková J et al. Od genomu k proteinu – využití proteinových čipů v onkologii. Klin onkol 2006; 19 (Suppl): 346–350.
60. Hayduk EJ, Choe LH, Lee KH. Proteomic tools in discovery driven science. Current Science 2002; 17 (83): 840–844.
61. Smith L, Lind MJ, Welham KJ et al. Cancer proteomics and its application to discovery of therapy response markers in human cancer. Cancer 2006; 107(2): 232–241.
62. Herosimczyk A, Dejeans N, Sayd T et al. Plasma proteome analysis: 2D gels and chips. J Physiol Pharmacol 2006; 57 (Suppl 7): 81–93.
63. Pierce JD, Fakhari M, Works KV et al. Understanding proteomics. Nurs Health Sci 2007; 9(1): 54–60.
64. Ghobrial IM, McCormick DJ, Kaufmann SH et al. Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 2005; 105(9): 3722–3730.
65. Paczesny S, Krijanovski OI, Braun TM et al. A biomarker panel for acute graft-versus-host disease. Blood 2009; 113(2): 273–278.
66. Whitelegge JP. Plant proteomics: BLASTing out of a MudPIT. Proc Natl Acad Sci U S A 2002; 99(18): 11564–11566.
67. Chen EI, Yates JR. Cancer Proteomics by Quantitative Shotgun Proteomics. Mol Oncol 2007; 1(2): 144–159.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2009 Číslo 5
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Rectal Neuroendocrine Tumours
- Chronic Gastrointestinal Toxicity after External-Beam Radiation Therapy for Prostate Cancer
- Evaporation of Selected Cytotoxic Drugs and Permeation of Protective Gloves – Research into the Occupational Risks of Health Care Personnel Handling Hazardous Cytotoxic Drugs (CYTO Project)
- Proteomic Analysis of Cancer Cells