#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Analysis of Serum Levels of Selected Biological Parameters in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma


Authors: V. Ščudla 1;  M. Budíková 2 ;  P. Petrová 2;  J. Minařík 1;  T. Pika 1;  J. Bačovský 1;  D. Adamová 3;  K. Langová 4 ;  Česká Myelomová Skupina
Authors place of work: III. interní klinika LF UP a FN, Olomouc 1;  Oddělení klinické bio­chemie FN, Olomouc 2;  Hematologické a transfuzní oddělení Slezské nemocnice, Opava 3;  Ústav lékařské bio­fyziky LF UP, Olomouc 4
Published in the journal: Klin Onkol 2010; 23(3): 171-181
Category: Original Articles

Summary

Backgrounds:
The aim of the study was to evaluate the serum levels of 18 selected parameters in monoclonal gammopathy of undetermined significance, and the initial, asymptomatic phase of multiple myeloma, also from the point of view of the potential contribution to the differentiation of these two units.

Materials and Methods:
The analyzed 119- patient group consisted of 59 individuals with monoclonal gammopathy of undetermined significance and 60 patients with multiple myeloma assessed at the time of diagnosis before the start of the treatment. For the evaluation of serum levels we used radioenzyme assay (thymidine kinase), immunoradiometry (IGF‑1), enzyme immunoassay (osteocalcin, osteoprotegerin, ICTP), electrochemiluminiscence (PINP), quantitative sandwich enzyme immunoassay (MIP‑1α and MIP‑1β, IL‑17, osteopontin, HGF, VEGF, angiogenin, endostatin, syndecan‑ 1/ CD138), and for the assessment of serum levels of free light chains κ and λ, the FreeliteTM system. Statistical evaluation was done using the Pearson chi‑ quadrat test and the U‑ test according to Mann‑Whitney (p < 0.05).

Results:
Statistically significant differences between monoclonal gammopathy of undetermined significance and multiple myeloma were found in the case of serum levels of thymidine kinase (0.0002), ICTP (0.001), MIP‑1α (0.002), osteopontin (< 0.0001), HGF (< 0.0001), syndecan‑ 1 (< 0.0001), and the κ/ λ ratio (0.0002), while lower significance was found in the case of angiogenin (0.031) and endostatin (0.011). Statistically non‑significant differences between multiple myeloma and monoclonal gammopathy of undetermined significance were within the serum levels of IGF‑1, osteocalcin, bALP, PINP, OPG, MIP‑1β, IL‑17, parathormon and VEGF.

Conclusion:
Statistical analysis revealed significant differences between monoclonal gammopathy of undetermined significance and multiple myeloma in 9 of the 18 evaluated parameters. However, due to the significant overlapping of the measured values, none of the parameters is unambiguously able to distinguish between the units. A certain contribution in the discrimination of multiple myeloma from monoclonal gammopathy of undetermined significance was found in markedly increased serum levels of thymidine kinase, MIP‑1α , osteopontin, HGF and significant pathology of the κ/ λ index.

Key words:
monoclonal gammopathy of undetermined significance –  multiple myeloma –  angiogenesis –  cytokines –  metabolism


Zdroje

1. Hideshima T, Bergsagel PL, Kuehl MW et al. Advances in bio­logy of multiple myeloma: Clinical applications. Blood 2004; 104(3): 607– 618.

2. Urashima M, Chen BP, Chen S et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood 1997; 90(2): 754– 765.

3. International Myeloma Working Group. Criteria for the clasification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Brit J Haematol 2003; 121(5): 749– 757.

4. Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance and smouldering multiple myeloma: emphasis on risk factor for progression. Brit J Haematol 2007; 139(5): 730– 743.

5. Ščudla V, Budíková M, Pika T et al. Srovnání sérových hladin vybraných bio­logických ukazatelů u monoklonální gamapatie nejistého významu a mnohočetného myelomu. Vnitř Lék 2006; 52(3): 232– 240.

6. Ščudla V, Budíková M, Pika T et al. Srovnání sérových hladin vybraných bio­logických působků u monoklonální gamapatie nejistého významu a mnohočetného myelomu. Čas Lék čes 2009; 148: 315– 322.

7. Scudla V, Pika T, Budikova M et al. The importance of serum levels of selected bio­logical parameters in the diagnosis, staging and prognosis of multiple myeloma. Neoplasma 2010; 57(2): 102– 110.

8. Scudla V, Pika T, Budiková M et al. The relationship between some soluble osteogenic markers, angiogenic cytokines/ other bio­logical parameters and the stages of multiple myeloma evaluated according to the Durie‑ Salmon and International Prognostic Index stratifications systems. Biomed Pap Med 2009; 153(4): 275– 282.

9. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36(3): 842– 854.

10. Greipp PR, San Miguel J, Durie BG et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23(15): 3412– 3420.

11. Hájek R, Adam Z, Maisnar V et al. Diagnostika a léčba mnohočetného myelomu. Doporučení vypracované Českou myelomovou skupinou a Myelomovou sekcí České hematologické společnosti a Slovenskou myelómovou spoločností pro diagnostiku a léčbu mnohočetného myelomu. Transfuze Hematol dnes 2009; 15 (Suppl. 2): 1– 80.

12. Bradwell AR. Serum free light chain analysis (plus He­vylite). 5th ed. Birmingham: The Binding Site Ltd 2008.

13. Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol 2006; 134(6): 573– 589.

14. Yacoby S, Pearse RN, Johnson CL et al. Myeloma inter­acts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 2002; 116(2): 278– 290.

15. Vacca A, Ria R, Ribatti D et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 2003; 88(2): 176– 185.

16. Pour L, Hájek R, Buchler T et al. Angiogeneze a antiangiogenní terapie u nádorů. Vnitř Lék 2004; 50(12): 930– 938.

17. Holt RU, Fagerli UM, Baykov V et al. Hepatocyte growth factor promotes migration of human myeloma cells. Haematologica 2008; 93(4): 619– 622.

18. Seidel C, Børset M, Hjertner O et al. High levels of soluble syndecan‑ 1 in myeloma‑ derived bone marrow: modulation of hepatocyte growth factor activity. Blood 2000; 96(9): 3139– 3146.

19. Heider U, Fleissner C, Zavrski I et al. Bone markers in multiple myeloma. Eur J Cancer 2006; 42(11): 1544– 1553.

20. Fonseca R, Trendle MC, Leong T et al. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br J Haematol 2000; 109(1): 24– 29.

21. Alexandrakis MG, Passam FH, Boula A et al. Relationship between circulating serum soluble interleukin‑6 receptor and the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in multiple myeloma. Ann Hematol 2003; 82(1): 19– 23.

22. Giuliani N, Colla S, Rizzoli V. New insight in the mechanism of osteoclast activation and formation in multiple myeloma: Focus on the receptor activator of NF‑ kB ligand (RANKL). Exp Hematol 2004; 32(8): 685– 691.

23. Roux S, Meignin V, Quillard J et al. RANK (receptor activator of nuclear factor‑ kappaB) and RANKL expression in multiple myeloma. Br J Haematol 2002; 117(1): 86– 92.

24. Abildgaard N, Bentzen SM, Nielsen JL, for the Nordic Myeloma Study Group (NMSG). Serum markers of bone metabolism in multiple myeloma: Prognostic value of the carboxy‑terminal telopeptide of type I collagen (ICTP). Br J Haematol 1997; 96(1): 103– 110.

25. Špička I, Cieslar P, Procházka B et al. Prognostické faktory a markery aktivity u mnohočetného myelomu. Čas Lék čes 2001; 139: 208– 212.

26. Terpos E, Politou M, Szydlo R et al. Serum levels of macrophage inflammatory protein‑1 a (MIP‑1α ) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol 2003; 123(1): 106– 109.

27. Abe M, Hiura K, Wilde J et al. Role for macrophage inflammatory protein (MIP)- 1α and MIP‑1β in the develop­ment of osteolytic lesions in multiple myeloma. Blood 2002; 100(6): 2195– 2202.

28. Choi SJ, Cruz JC, Craig F et al. Macrophage inflammatory protein 1‑alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000; 96(2): 671– 675.

29. Graham GJ, Wright EG, Hewick R et al. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 1990; 344(6265): 442– 444.

30. Lentzsch S, Gries M, Janz M et al. Macrophage inflammatory protein 1‑alpha (MIP‑1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101(9): 3568– 3573.

31. Hata H. Bone lesions and macrophage inflammatory protein‑1 alpha (MIP‑1α) in human multiple myeloma. Leuk Lymphoma 2005; 46(7): 967– 972.

32. Terpos E, Tasidou A, Roussou M et al. Increased expression of macrophage inflammatory protein‑1 alpha on trephine bio­psies correlates with advanced myeloma, extensive bone disease and elevated microvessel density in newly diagnosed patients with multiple myeloma. Haematologica 2009; 94 (Suppl 2): 146.

33. Hashimoto T, Abe M, Oshima T et al. Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)- 1α and MIP‑1β correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol 2004; 125(1): 38– 41.

34. Terpos E, Anagnostopoulos A, Kastritis E et al. The combination of bortezomib melphalan, dexamethasone and intermittent thalidomide (VMDT) is an effectie regimen for relapsed/ refractory myeloma and reduces serum levels of RANKL, MIP 1Α and angiogenic cytokines. Haematologica 2006; 91: 84.

35. Johnston NI, Gunasekharan VK, Ravindranath A et al. Osteopontin as a target for cancer therapy. Front Biosci 2008; 13: 4361– 4372.

36. Lee CY, Tien HF, Hou HA et al. Marrow osteopontin level as a prognostic factor in acute myeloid leukaemia. Br J Haematol 2008; 141(5): 736– 739.

37. Štifter S, Valković T, Načinović‑ Duletić A et al. Vascular endothelial growth factor, osteopontin and NF- kB/ P65 expression in multiple myeloma. Haematologica 2008; 93 (Suppl. 1): 80.

38. Robbiani DF, Colon K, Ely S et al. Osteopontin dysregulation and lytic bone lesions in multiple myeloma. Hematol Oncol 2007; 25(1): 16– 20.

39. Saeki Y, Mima T, Ishii T et al. Enhanced production of osteopontin in multiple myeloma: clinical and pathogenic implications. Brit J Haematol 2003; 123(2): 263– 270.

40. Rajkumar SV, Mesa RA, Fonseca R et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 2002; 8(7): 2210– 2216.

41. Pour L, Svachova H, Adam Z et al. Pretreatment he­patocyte growth factor and thrombospondin‑1 levels predict response to high‑dose chemotherapy for multiple myeloma. Neoplasma 2010; 57(1): 29– 33.

42. Pour L, Svachova H, Adam Z et al. Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol 2009; 84(4): 332– 336.

43. Sezer O, Jakob C, Eucker J et al. Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 2001; 66(2): 83– 88.

44. Seidel C, Børset M, Turesson I et al, for the Nordic Myeloma Study Group. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. Blood 1998; 91(3): 806– 812.

45. Hlavkova D, Kopecky O, Lukesova S et al. Monitoring of serum levels of angiogenin, ENA‑78 ad GRO chemokines in patients with renal cell carcinoma (RCC) in the course of the treatment. Acta Medica 2008; 51(3): 185– 190.

46. Passam FH, Sfiridaki A, Pappa C et al. Angiogenesis‑related growth factors and cytokines in the serum of patients with B non‑Hodgkin lymphoma; relation to clinical features and response to treatment. Int J Labor Hematol 2008; 30(1): 17– 25.

47. Ergün S, Kilic N, Wurmback JH et al. Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes. Angiogenesis 2001; 4(3): 193– 206.

48. O’Reilly MS, Boehm T, Shing Y et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88(2): 277– 285.

49. Dhodapkar MV, Kelly T, Theus A et al. Elevated levels of shed syndecan‑ 1 correlate with tumour mass and decreased matrix metalloproteinase‑ 9 activity in the serum of patients with multiple myeloma. Br J Haematol 1997; 99: 368– 371.

50. Maisnar V, Toušková M, Malý J et al. Význam vybraných sledovaných laboratorních ukazatelů pro diferenciální diagnostiku a sledování aktivity mnohočetného myelomu. Vnitř Lék 2002; 48: 290– 297.

51. Seidel C, Sundan A, Hjorth M et al. Serum syndecan‑ 1: a new independent prognostic marker in multiple myeloma. Blood 2000; 95(2): 388– 392.

52. Kyrtsonis MC, Vassilakopoulos TP, Siakantaris MP et al. Serum syndecan‑ 1, basic fibroblast growth factor and osteoprotegerin in multiple myeloma patients at diagnosis and during the course of the disease. Eur J Haematol 2004; 72(4): 252– 258.

53. Schaar CG, Vermeer HJ, Wijermans PW et al. Serum syndecan‑ 1 in patients with newly diagnosed monoclonal proteinaemia. Haematologica 2005; 90(10): 1437– 1438.

54. Witzig TE, Kimlinger T, Stenson M et al. Syndecan‑ 1 expression on malignant cells from the blood and marrow of patients with plasma cell proliferative disorders and B‑ cell chronic lymphocytic leukemia. Leuk Lymphoma 1998; 31(1– 2): 167– 175.

55. Tate JR, Gill D, Cobcroft R et al. Practical considerations for the measurement of free light chains in serum. Clin Chem 2003; 49(8): 1252– 1257.

56. Rajkumar VS. MGUS and smoldering multiple myeloma: update on pathogenesis, natural history, and management. Am Soc Hematol Educ Program 2005; 2005(1): 340– 345.

57. Rajkumar SV, Kyle RA, Therneau TM et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005; 106(3): 812– 817.

58. Mead GP, Carr‑ Smith HD, Drayson MT et al. Serum free light chains for monitoring multiple myeloma. Br J Haematol 2004; 126(3): 348– 354.

59. Dispenzieri A, Zhang L, Katzmann J et al. Appraisal of immunoglobulin free light chain as a marker of response. Blood 2008; 111(10): 4908– 4915.

60. Corso A, Arcaini L, Mangiacavalli S et al. Biochemical markers of bone disease in asymptomatic early stage multiple myeloma. A study on their role in identifying high risk patients. Haematologica 2001; 86(4): 394– 398.

61. Renzulli MR, Terragna C, Testoni N et al. Insulin‑like growth factor 1 (IGF‑1) is overexpressed in multiple myeloma plasma cells (PC) and regulates the expression of the IGF‑1 receptor. Haematologica 2006; 91: 87.

62. Menu E, van Valckenborhg E, van Camp B et al. The role of the insulin‑like growth factor 1 receptor axis in multiple myeloma. Arch Physiol Biochem 2009; 115(2): 49– 57.

63. Hsu JH, Shi Y, Krajewski S et al. The AKT kinase is activated in multiple myeloma tumor cells. Blood 2001; 98(9): 2853– 2855.

64. Greco C, Vitelli G, Vercillo G et al. Reduction of serum IGF‑1 levels in patients affected with monoclonal gammopathies of undetermined significance or multiple myeloma. Comparison with bFGF, VEGF and k‑ ras gene mutation. J Exp Clin Cancer Research 2009; 28: 35.

65. Seidel C, Hjertner Ø, Abildgaard N et al, for Nordic Myeloma Study Group. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 2001; 98: 2269– 2271.

66. Terpos E, Szydlo R, Apperley JF et al. Soluble receptor activator of nuclear factor k‑ B ligand –  osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102(3): 1064– 1069.

67. Corso A, Dovio A, Rusconi C et al. Osteoprotegerin serum levels in multiple myeloma and MGUS patients compared with age and sex‑ matched healthy controls. Leukemia 2004; 18(9): 1555– 1557.

68. Dhodapkar KM, Barbuto S, Matthews P et al. Dendritic cells mediate the induction of polyfunctional human IL17- producing cells (Th17- 1 cells) enriched in the bone marrow of patients with myeloma. Blood 2008; 112(7): 2878– 2885.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo 3

2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#