Molecular Cytogenetic Analysis of Chromosomal Aberrations in Cells of Low Grade Gliomas and Its Contribution for Tumour Classification
Authors:
H. Lhotská 1; Z. Zemanová 1; F. Kramář 2; L. Lizcová 1; K. Svobodová 1; Š. Ransdorfová 3; D. Bystřická 1; Z. Krejčík 3; P. Hrabal 2; A. Dohnalová 4; M. Kaiser 5; K. Michalová 1
Authors place of work:
Centrum nádorové cytogenetiky, Ústav lékařské biochemie a laboratorní diagnostiky
1. LF UK a VFN v Praze
1; Oddělení neurochirurgie, 1. LF UK a ÚVN Praha
2; Oddělení cytogenetiky, Ústav hematologie a krevní transfuze, Praha
3; Fyziologický ústav, 1. LF UK v Praze
4; Neurochirurgie, Krajská nemocnice Liberec
5
Published in the journal:
Klin Onkol 2014; 27(3): 183-191
Category:
Original Articles
Summary
Background:
Low-grade gliomas represent a heterogeneous group of primary brain malignancies. The current diagnostics of these tumors rely strongly on histological classification. With the development of molecular cytogenetic methods several genetic markers were described, conributing to a better distinction of glial subtypes. The aim of this study was to assess the frequency of acquired chromosomal aberrations in low‑ grade gliomas and to search for new genomic changes associated with higher risk of tumor progression.
Patients and Methods:
We analysed biopsy specimens from 41 patients with histological diagnosis of low-grade glioma using interphase fluorescence in situ hybridization (I‑ FISH) and single nucleotide polymorphism (SNP) array techniques (19 females and 22 males, medium age 42 years).
Results:
Besides notorious and most frequent finding of combined deletion of 1p/ 19q (81.25% patients) several other recurrent aberrations were described in patients with oligodendrogliomas: deletions of p and q arms of chromosome 4 (25% patients), deletions of the short arms of chromosome 9 (18.75% patients), deletions of the long arms of chromosome 13 and monosomy of chromosome 18 (18.75% patients). In biopsy specimens from patients with astrocytomas, we often observed deletion of 1p (24% patients), amplification of the long arms of chromosome 7 (16% patients), deletion of the long arm of chromosome 13 (20% patients), segmental uniparental disomy (UPD) of the short arms of chromosome 17 (60% patients) and deletion of the long arms of chromosome 19 (28% patients). In one patient we detected a shuttered chromosome 10 resulting from chromothripsis.
Conclusion:
Using a combination of I‑ FISH and SNP array, we detected not only known chromosomal changes but also new or less frequent recurrent aberrations. Their role in cancer‑ cell progression and their impact on low‑ grade gliomas classification remains to be elucidated in a larger cohort of patients.
Key words:
oligodendroglioma – astrocytoma – SNP array – interphase FISH – glioma
This work was supported by grants of Internal Grant Agency of the Czech Ministry of Health No. NT/13212-4, PRVOUK-P27/LF1/1 a RVO-VFN64165.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
5. 11. 2013
Accepted:
29. 1. 2014
Zdroje
1. Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the centralnervous system. Acta Neuropathologica 2007; 114(2): 97– 109.
2. Huttner A. Overview of primary brain tumors pathologic classification, epidemiology, molecular biology, and prognostic markers. Hematol Oncol Clin North Am 2012; 26(4): 715– 732. doi: 10.1016/ j.hoc.2012.05.004.
3. Crocetti E, Trama A, Stiller C et al. Epidemiology of glial and non‑glial brain tumours in Europe. Eur J Cancer 2012; 48(10): 1532– 1542. doi: 10.1016/ j.ejca.2011.12.013.
4. Godard S, Getz G, Delorenzi M et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003; 63(20): 6613– 6625.
5. Bulik M, Jancalek R, Vanicek J et al. Potential of MR spectroscopy for assessement of glioma grading. Clin Neurol Neurosurg 2013; 115(2): 146– 153. doi: 10.1016/ j.clineuro.2012.11.002.
6. Labussiére M, Idbaih A, Wang XW et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 2010; 74(23): 1886– 1890. doi: 10.1212/ WNL.0b013e3181e1cf3a.
7. Idbaih A, Marie Y, Lucchesi C et al. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer 2008; 122(8): 1778– 1786.
8. Roerig P, Nessling M, Radlwimmer B et al. Molecular classification of human gliomas using matrix‑based comparative genomic hybridization. Int J Cancer 2005; 117(1): 95– 103.
9. Jeuken JW, von Deimling A, Wesseling P. Molecular pathogenesis of oligodendroglial tumors. J Neurooncol 2004; 70(2): 161– 181.
10. Cairncross G, Jenkins R. Gliomas with 1p/ 19q codeletion: a.k.a. oligodendroglioma. Cancer J 2008; 14(6): 352– 357. doi: 10.1097/ PPO.0b013e31818d8178.
11. Jenkins RB, Blair H, Ballman KV et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 2006; 66(20): 9852– 9861.
12. Griffin CA, Burger P, Morsberger L et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol 2006; 65(10): 988– 994.
13. Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup radiation therapy oncology group trial 9402. J Clin Oncol 2006; 24(18): 2707– 2714.
14. Cairncross G, Wang MH, Shaw E et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long‑term results of RTOG 9402. J Clin Oncol 2013; 31(3): 337– 343. doi: 10.1200/ JCO.2012.43.2674.
15. Jurga LM, Malý M. Úskalia kombinovanej rádiochemoterapie a bioterapie malígnych gliómov. Klin Onkol 2006; 19(6): 317– 320.
16. Zemanová Z, Kramar F, Babicka L et al. Molecular cytogenetic stratification of recurrent oligodendrogliomas: utility of interphase fluorescence in situ hybridization (I‑ FISH). Folia Biol 2006; 52(3): 71– 78.
17. Wiltshire RN, Rasheed BK, Friedman HS et al. Comparative genetic patterns of glioblastoma multiforme: potential diagnostic tool for tumor classification. Neuro Oncol 2000; 2(3): 164– 173.
18. Holland H, Ahnert P, Koschny R et al. Detection of novel genomic aberrations in anaplastic astrocytomas by GTG‑ banding, SKY, locus‑ specific FISH, and high density SNP‑ array. Pathol Res Pract 2012; 208(6): 325– 330. doi: 10.1016/ j.prp.2012.03.010.
19. Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet 2012; 205(12): 613– 621. doi: 10.1016/ j.cancergen.2012.10.009.
20. Vránová V, Necesalová E, Kuglík P et al. Screening of genomic imbalances in glioblastoma multiforme using high‑resolution comparative genomic hybridization. Oncol Rep 2007; 17(2): 457– 464.
21. Cowell JK, Lo KC, Luce J et al. Interpreting aCGH‑ defined karyotypic changes in gliomas using copy number status, loss of heterozygosity and allelic ratios. Exp Mol Pathol 2010; 88(1): 82– 89. doi: 10.1016/ j.yexmp.2009.09.014.
22. Belaud‑ Rotureau MA, Meunier N, Eimer S et al. Automatized assessment of 1p36– 19q13 status in gliomas by interphase FISH assay on touch imprints of frozen tumours. Acta Neuropathol 2006; 111(3): 255– 263.
23. Wiltshire RN, Herndon JE, Lloyd A et al. Comparative genomic hybridization analysis of astrocytomas – prognostic and diagnostic implications. J Mol Diagn 2004; 6(3): 166– 179.
24. Li YB, Wang DP, Wang L et al. Distinct genomic aberrations between low‑ grade and high‑grade gliomas of chinese patients. PLoS One 2013; 8(2): e57168. doi: 10.1371/ journal.pone.0057168.
25. Idbaih A, Crinière E, Ligon KL et al. Array‑based genomics in glioma research. Brain Pathol 2010; 20(1): 28– 38. doi: 10.1111/ j.1750- 3639.2009.00274.x.
26. Rossi MR, Gaile D, Laduca J et al. Identification of consistent novel submegabase deletions in low‑ grade oligodendrogliomas using array‑based comparative genomic hybridization. Genes Chromosomes Cancer 2005; 44(1): 85– 96.
27. Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med 2009; 15(3): 120– 128. doi: 10.1016/ j.molmed.2009.01.005
28. Okamoto Y, Di Patre PL, Burkhard C et al. Population‑based study on incidence, survival rates, and genetic alterations of low‑ grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 2004; 108(1): 49– 56.
29. Stephens PJ, Greenman CD, Fu B et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144(1): 27– 40. doi: 10.1016/ j.cell.2010.11.055.
30. Maher CA, Wilson RK. Chromothripsis and human disease: piecing together the shattering process. Cell 2012; 148(1– 2): 29– 32. doi: 10.1016/ j.cell.2012.01.006.
31. Gaiser T, Gaiser MR, Hirsch D et al. Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. J Invest Dermatol 2013; 133: S56– S56. doi:10.1038/ jid.2013.96.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo 3
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Very Late Effects of Radiotherapy – Limiting Factor of Current Radiotherapy Techniques
- Inverted Papiloma and Its Rare Forms
- Case Report of a Patient with Advanced and Disseminated Gastric Carcinoma Treated by S-1
- Cancer in Elderly