Nrf2 – Two Faces of Antioxidant System Regulation
Authors:
M. Pastorek; P. Müller; B. Vojtěšek
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2015; 28(Supplementum 2): 26-31
doi:
https://doi.org/10.14735/amko20152S26
Summary
One of the most prominent defense mechanisms of cells undergoing stress is the Nrf2-Keap1 signaling pathway. After exposure to either carcinogens or toxic compounds inducing oxidative stress, attacked cells react by release of Keap1 from the Nrf2-Keap1 complex. Freeing Nrf2 from the complex allows its translocation into the nucleus, thus enabling start of the transcriptional program of cytoprotective genes. Therefore, induction of Nrf2 by chemopreventive compounds may show potential in cancer prevention. But while it protects normal cells, increased activity of Nrf2 signaling pathway also facilitates cancer progression and protects neoplastic cells from therapeutic agents. Increased expression and subsequent accumulation of Nrf2 contributes to acquired drug resistance and is often associated with worse prognosis. Knowing ‘both faces’ of Nrf2 signaling pathway is thus relevant not only for basic research but has also substantial clinical implications.
Key words:
Nrf2 – Keap1 – antioxidant – drug resistance – chemoprevention
This study was supported by European Re-gional Development Fund and the State Budget of the Czech Republic (RECAMO CZ.1.05//2.1.00/03.0101), MEYS – NPS I – LO1413, MH CZ –DRO (MMCI, 00209805) and by BBMRI_CZ (LM2010004).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
9. 4. 2015
Accepted:
15. 6. 2015
Zdroje
1. Zhang DD, Lo SC, Cross JV et al. Keap1 is a redox‑ regulated substrate adaptor protein for a Cul3- dependent ubiquitin ligase complex. Mol Cell Biol 2004; 24(24): 10941– 10953. doi: 10.1128/ MCB.24.24.10941‑ 10953.2004.
2. McMahon M, Thomas N, Itoh K et al. Redox‑ regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox‑ sensitive Neh2 degron and the redox‑ insensitive Neh6 degron. J Biol Chem 2004; 279(30): 31556– 31567.
3. Tong KI, Kobayashi A, Katsuoka F et al. Two site substrate recognition model for the Keap1- Nrf2 system: a hinge and latch mechanism. Biol Chem 2006; 387(10– 11): 1311– 1320.
4. Kobayashi A, Kang MI, Okawa H et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3‑based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004; 24(16): 7130– 7139.
5. Moi P, Chan K, Asunis I et al. Isolation of NFE2‑related factor 2 (Nrf2), a NF‑ E2‑like basic leucine zipper transcriptional activator that binds to the tandem NF‑ E2/ AP1 repeat of the b‑ globin locus control region. Proc Natl Acad Sci U S A 1994; 91(21): 9926– 9930.
6. Nioi P, Nguyen T, Sherratt PJ et al. The carboxyterminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 2005; 25(24): 10895– 10906.
7. Katoh Y, Itoh K, Yoshida E et al. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 2001; 6(10): 857– 868.
8. Itoh K, Wakabayashi N, Katoh Y et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino‑terminal Neh2 domain. Genes Dev 1999; 13(1): 76– 86.
9. Lo SC, Li X, Henzl MT et al. Structure of the Keap1-Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 2006; 25(15): 3605– 3617.
10. McMahon M, Thomas N, Itoh K et al. Dimerization of substrate adaptors can facilitate cullin mediated ubiquitylation of proteins by a ‘tethering’ mechanism: a two‑site interaction model for the Nrf2- Keap1 complex. J Biol Chem 2006; 281(34): 24756– 24768.
11. Tong KI, Padmanabhan B, Kobayashi A et al. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol 2007; 27(21): 7511– 7521.
12. Villeneuve NF, Tian W, Wu T et al. USP15 negatively regulates Nrf2 through deubiquitination of Keap1. Mol Cell 2013; 51(1): 68– 79. doi: 10.1016/ j.molcel.2013.04.022.
13. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1- Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011; 16(2): 123– 140. doi: 10.1111/ j.1365‑ 2443.2010.01473.x.
14. Kansanen E, Jyrkkanen HK, Levonen AL. Activation of stress signalling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 2012; 52(6): 973– 982. doi: 10.1016/ j.freeradbiomed.2011.11.038.
15. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1- Nrf2- ARE pathway. Annu Rev Pharmacol Toxicol 2007; 47: 89– 116.
16. Lau A, Villeneuve NF, Sun Z et al. Dual roles of Nrf2 in cancer. Pharmacol Res 2008; 58(5– 6): 262– 270. doi: 10.1016/ j.phrs.2008.09.003.
17. Ramos‑ Gomez M, Kwak MK, Dolan PM et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor‑ deficient mice. Proc Natl Acad Sci 2001; 98(6): 3410– 3415.
18. Yamamoto T, Yoh K, Kobayashi A et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem Biophys Res Commun 2004; 321(1): 72– 79.
19. Suzuki T, Shibata T, Takaya K et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol Cell Biol 2013; 33(12): 2402– 2412. doi: 10.1128/ MCB.00065‑ 13.
20. Morito N, Yoh K, Itoh K et al. Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene 2003; 22(58): 9275– 9281.
21. Shibata T, Ohta T, Tong KI et al. Cancer related mutations in NRF2 impair its recognition by Keap1- Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A 2008; 105(36): 13568– 13573. doi: 10.1073/ pnas.0806268105.
22. Wang XJ, Sun Z, Villeneuve NF et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008; 29(6): 1235– 1243. doi: 10.1093/ carcin/ bgn095.
23. Jiang T, Chen N, Zhao F et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res 2010; 70(13): 5486– 5496. doi: 10.1158/ 0008‑ 5472.CAN‑ 10‑ 0713.
24. Kim YR, Oh JE, Kim MS et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 2010; 220(4): 446– 451. doi: 10.1002/ path.2653.
25. Solis LM, Behrens C, Dong W et al. Nrf2 and Keap1 abnormalities in non‑small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 2010; 16: 3743– 3753. doi: 10.1158/ 1078‑ 0432.CCR‑ 09‑ 3352.
26. Zhang P, Singh A, Yegnasubramanian S et al. Loss of Kelch‑like ECH‑associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 2010; 9(2): 336– 346. doi: 10.1158/ 1535‑ 7163.MCT‑ 09‑ 0589.
27. Sasaki H, Suzuki A, Shitara M et al. Genotype analysis of the NRF2 gene mutation in lung cancer. Int J Mol Med 2012; 31(5): 1135– 1138. doi: 10.3892/ ijmm.2013.1324.
28. Singh A, Misra V, Thimmulappa RK et al. Dysfunctional KEAP1- NRF2 interaction in non‑smallcell lung cancer. PLoS Med 2006; 3(10): e420.
29. Inoue D, Suzuki T, Mitsuishi Y et al. Accumulation of p62/ SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci 2012; 103(4): 760– 766. doi: 10.1111/ j.1349‑ 7006.2012.02216.x.
30. Ohta T, Iijima K, Miyamoto M et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008; 68(5): 1303– 1309. doi: 10.1158/ 0008‑ 5472.CAN‑ 07‑ 5003.
31. Homma S, Ishii Y, Morishima Y et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 2009; 15(10): 3423– 3432. doi: 10.1158/ 1078‑ 0432.CCR‑ 08‑ 2822.
32. Lister A, Nedjadi T, Kitteringham NR et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer 2011; 10: 37. doi: 10.1186/ 1476‑ 4598‑ 10‑ 37.
33. Mitsuishi Y, Taguchi K, Kawatani Y et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012; 22(1): 66– 79. doi: 10.1016/ j.ccr.2012.05.016.
34. Jaramillo MC, Zhang DD. The emerging role of the Nrf2- Keap1 signaling pathway in cancer. Genes Dev 2013; 27(20): 2179– 2191. doi: 10.1101/ gad.225680.113.
35. Muscarella LA, Parrella P, D’Alessandro V et al. Frequent epigenetics inactivation of KEAP1 gene in non‑small cell lung cancer. Epigenetics 2011; 6(6): 710– 719.
36. Padmanabhan B, Tong KI, Ohta T et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 2006; 21(5): 689– 700.
37. Nioi P, Nguyen T. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem Biophys Res Commun 2007; 362(4): 816– 821.
38. Ooi A, Dykema K, Ansari A et al. CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 2013; 73(7): 2044– 2051. doi: 10.1158/ 0008‑ 5472.CAN‑ 12‑ 3227.
39. Sato Y, Yoshizato T, Shiraishi Y et al. Integrated molecular analysis of clear‑ cell renal cell carcinoma. Nat Genet 2013; 45(8): 860– 867. doi: 10.1038/ ng.2699.
40. Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12(8): 564– 571. doi: 10.1038/ nrc3278.
41. DeNicola GM, Karreth FA, Humpton TJ et al. Oncogene‑induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475(7354): 106– 109. doi: 10.1038/ nature10189.
42. Hanada N, Takahata T, Zhou Q et al. Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 2012; 12: 66. doi: 10.1186/ 1471‑ 2407‑ 12‑ 66.
43. Adam J, Hatipoglu E, O’Flaherty L et al. Renal cyst formation in Fh1- deficient mice is independent of the Hif/ Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011; 20(4): 524– 537. doi: 10.1016/ j.ccr.2011.09.006.
44. Ooi A, Wong JC, Petillo D et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 2011; 20(4): 511– 523. doi: 10.1016/ j.ccr.2011.08.024.
45. Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of nrf2. Pharmacol Rev 2012; 64(4): 1055– 1081. doi: 10.1124/ pr.110.004333.
46. Faraonio R, Vergara P, Di Marzo D et al. p53 suppresses the Nrf2- dependent transcription of antioxidant response genes. J Biol Chem 2006; 281(52): 39776– 39784.
47. Chen W, Sun Z, Wang XJ et al. Direct interaction between Nrf2 and p21(Cip1/ WAF1) upregulates the Nrf2- mediated antioxidant response. Mol Cell 2009; 34(6): 663– 673. doi: 10.1016/ j.molcel.2009.04.029.
48. Komatsu, Kurokawa H, Waguri S et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12(3): 213– 223. doi: 10.1038/ ncb2021.
49. Lau A, Wang XJ, Zhao F et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 2010; 30(13): 3275– 3285. doi: 10.1128/ MCB.00248‑ 10.
50. Taguchi K, Fujikawa N, Komatsu M et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A 2012; 109(34): 13561– 13566. doi: 10.1073/ pnas.1121572109.
51. Copple IM, Lister A, Obeng AD et al. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1- Nrf2 cell defense pathway. J Biol Chem 2010; 285(22): 16782– 16788. doi: 10.1074/ jbc.M109.096545.
52. Singh A, Boldin‑Adamsky S, Thimmulappa RK et al. RNAi‑ mediated silencing of nuclear factor erythroid‑ 2‑related factor 2 gene expression in non‑small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008; 68(19): 7975– 7984. doi: 10.1158/ 0008‑ 5472.CAN‑ 08‑ 1401.
53. Ren D, Villeneuve NF, Jiang T et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2- mediated defense mechanism. Proc Natl Acad Sci U S A 2011; 108(4): 1433– 1438. doi: 10.1073/ pnas.1014275108.
54. Hurttila H, Koponen JK, Kansanen E et al. Oxidative stress‑ inducible lentiviral vectors for genetherapy. Gene Ther 2008; 15(18): 1271– 1279. doi: 10.1038/ gt.2008.75.
55. Leinonen HM, Ruotsalainen AK, Määttä AM. Oxidative stress‑ regulated lentiviral TK/ GCV gene therapy for lung cancer treatment. Cancer Res 2012; 72(23): 6227– 6235. doi: 10.1158/ 0008‑ 5472.CAN‑ 12‑ 1166.
56. Nicholas JA, Boster AL, Imitola J et al. Design of oral agents for the management of multiple sclerosis: benefit and risk assessment for dimethyl fumarate. Drug Des Devel Ther 2014; 8: 897– 908. doi: 10.2147/ DDDT.S50962.
57. Bomprezzi R. Dimethyl fumarate in the treatment of relapsing‑ remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 2015; 8(1): 20– 30. doi: 10.1177/ 1756285614564152.
58. Gill AJ, Kolson DL. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy. Crit Rev Immunol 2013; 33(4): 307– 359.
59. Oh CJ, Kim JY, Choi YK et al. Dimethylfumarate attenuates renal fibrosis via NF‑ E2‑related factor 2-mediated inhibition of transforming growth factor‑β / Smad signaling. PLoS One 2012; 7(10): e45870. doi: 10.1371/ journal.pone.0045870.
60. Ashrafian H, Czibik G, Bellahcene M et al. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 2012; 15(3): 361– 371. doi: 10.1016/ j.cmet.2012.01.017.
61. Belge K, Brück J, Ghoreschi K. Advances in treating psoriasis. F1000Prime Rep 2014; 6: 4. doi: 10.12703/ P6‑ 4.
62. Brennan MS, Matos MF, Bing Li et al. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS One 2015; 10(3): e0120254. doi: 10.1371/ journal.pone.0120254.
63. Takaya K, Suzuki T, Motohashi H et al. Validation of the multiple sensor mechanism of the Keap1- Nrf2 system. Free Radic Biol Med 2012; 53(4): 817– 827. doi: 10.1016/ j.freeradbiomed.2012.06.023.
64. Odom RY, Dansby MY, Rollins‑ Hairston AM et al. Phytochemical induction of cell cycle arrest by glutathione oxidation and reversal by N‑ acetylcysteine in human colon carcinoma cells. Nutr Cancer 2009; 61(3): 332– 329. doi: 10.1080/ 01635580802549982.
65. Loewe R, Valero T, Kremling S et al. Dimethylfumarate impairs melanoma growth and metastasis. Cancer Res 2006; 66(24): 11888– 11896.
66. Ghods AJ, Glick R, Braun D et al. Beneficial actions of the anti‑inflammatory dimethyl fumarate in glioblastomas. Surg Neurol Int 2013; 4: 160. doi: 10.4103/2152‑ 7806.123656.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo Supplementum 2
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Adenoviral Vectors in Gene Therapy
- Recombinant Antibodies and Their Employment in Cancer Therapy
- Nrf2 – Two Faces of Antioxidant System Regulation
- What Can Study of Oligomerization of Proteinsin the Process of Oncogenesis Bring Us?