Recombinant Antibodies and Their Employment in Cancer Therapy
Authors:
E. Růčková; P. Müller; B. Vojtěšek
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2015; 28(Supplementum 2): 52-59
doi:
https://doi.org/10.14735/amko20152S52
Summary
Development of recombinant therapeutic antibodies is recently one of the fastest growing disciplines of applied biomedical research. Recombinant monoclonal antibodies are increasingly applied in biological therapy of many serious human diseases and are currently an irreplaceable part of a comprehensive cancer therapy. First mouse therapeutic antibodies had only limited applicability due to the strong immune response; however, technological advances enabled engineering of antibodies with increased specificity and efficacy, and on the other hand with reduced adverse effects due to lower antigenicity. This review provides a summary of knowledge about recombinant therapeutic antibodies, their mechanism of action and approaches how to improve their efficacy.
Key words:
antineoplastic agents – immunoglobulins – humanized monoclonal antibodies – therapeutic antibodies – recombinant antibodies
This study was supported by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101), MEYS – NPS I – LO1413 and MH CZ – DRO (MMCI, 00209805).
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
20. 4. 2015
Accepted:
26. 6. 2015
Zdroje
1. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12(4): 278– 287. doi: 10.1038/ nrc3236.
2. Hořejší V, Bartůňková J (eds). Základy imunologie. 1. vyd. Praha: Triton 1998.
3. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2- microglobulin‑containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 1996; 93(11): 5512– 5516.
4. Nelson AL. Antibody fragments: hope and hype. MAbs 2010; 2(1): 77– 83.
5. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495– 497.
6. Morrison SL, Johnson MJ, Herzenberg LA et al. Chimeric human antibody molecules: mouse antigen‑binding domains with human constant region domains. Proc Natl Acad Sci U S A 1984; 81(21): 6851– 6855.
7. Jones PT, Dear PH, Foote J et al. Replacing the complementarity‑ determining regions in a human antibody with those from a mouse. Nature 1986; 321 (6069): 522– 525.
8. McCafferty J, Griffiths AD, Winter G et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301): 552– 554.
9. Lonberg N, Taylor LD, Harding FA et al. Antigen‑ specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994; 368(6474): 856– 859.
10. Green LL, Hardy MC, Maynard‑ Currie CE et al. Antigen‑ specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994; 7(1): 13– 21.
11. Capon DJ, Chamow SM, Mordenti J et al. Designing CD4 immunoadhesins for AIDS therapy. Nature 1989; 337(6207): 525– 531.
12. Zalevsky J, Secher T, Ezhevsky SA et al. Dominant‑ negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J Immunol 2007; 179(3): 1872– 1883.
13. Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol 2005; 23(9): 1117– 1125.
14. Antibodysociety.org [homepage on the Internet]. The Antibody Society, USA; c2007– 2013 [updated 2015 January 17; cited 2015 April 10]. Available from: http:/ / www.antibodysociety.org/ news/ approved_mabs.php.
15. FDA.gov [homepage on the Internet]. U.S. Food and Drug Administration, USA [cited 2015 April 10]. Available from: http:/ / www.accessdata.fda.gov/ scripts/ cder/ drugsatfda/ index.cfm.
16. Klute K, Nackos E, Tasaki S et al. Microtubule inhibitor‑based antibody‑ drug conjugates for cancer therapy. Onco Targets Ther 2014; 7: 2227– 2236. doi: 10.2147/ OTT.S46887.
17. Kraeber‑ Bodéré F, Rousseau C, Bodet‑ Milin C et al. A pretargeting system for tumor PET imaging and radioimmunotherapy. Front Pharmacol 2015; 6: 54. doi: 10.3389/ fphar.2015.00054.
18. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today 2015. doi: 10.1016/ j.drudis.2015.02.008.
19. Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. The Oncologist 2015; 20(2): 176– 185. doi: 10.1634/ theoncologist.2014‑ 0358.
20. Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep 2013; 65(1): 1– 14.
21. Listinsky JJ, Siegal GP, Listinsky CM. Glycoengineering in cancer therapeutics: a review with fucose‑depleted trastuzumab as the model. Anticancer Drugs 2013; 24(3): 219– 227. doi: 10.1097/ CAD.0b013e328359e3f4.
22. Barbas CF, Burton DR. Selection and evolution of high‑affinity human anti‑viral antibodies. Trends Biotechnol 1996; 14(7): 230– 234.
23. Razai A, Garcia‑ Rodriguez C, Lou J et al. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J Mol Biol 2005; 351(1): 158– 169.
24. Fukuda I, Kojoh K, Tabata N et al. In vitro evolution of single‑chain antibodies using mRNA display. Nucleic Acids Res 2006; 34(19): e127.
25. Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 1997; 94(10): 4937– 4942.
26. Fuchs P, Breitling F, Dübel S et al. Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Biotechnology (N Y) 1991; 9(12): 1369– 1372.
27. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15(6): 553– 557.
28. Lee EC, Liang Q, Ali H et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 2014; 32(4): 356– 363. doi: 10.1038/ nbt.2825.
29. Murphy AJ, Macdonald LE, Stevens S et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 2014; 111(14): 5153– 5158. doi: 10.1073/ pnas.1324022111.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo Supplementum 2
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Adenoviral Vectors in Gene Therapy
- Recombinant Antibodies and Their Employment in Cancer Therapy
- Nrf2 – Two Faces of Antioxidant System Regulation
- What Can Study of Oligomerization of Proteinsin the Process of Oncogenesis Bring Us?