Cancer Treatment-induced Changes in Renal Function in Patients with Tumors – Update on Current Knowledge
Authors:
Tomáš Pokrivčák; Alexandr Poprach
Authors place of work:
Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2018; 31(1): 28-34
Category:
Review
doi:
https://doi.org/10.14735/amko201828
Summary
Background:
Renal abnormalities associated with malignancy are common with renal impairment occurring in about 60% of patients with tumors. Kidney disease may occur as a result of direct or indirect effects of tumors on kidneys and the urinary tract. Systematic oncology treatment can affect renal function in two ways, via direct toxic effects on kidney structure and indirectly via dehydration or tumor lysis syndrome. Since 2004, the Food and Drug Administration has approved a number of potentially nephrotoxic chemotherapeutics, targeted drugs, and immunotherapeutics for the treatment of solid tumors.
Aim:
This article provides an overview of the latest information on the nephrotoxicity associated with the use of new drugs.
Conclusion:
Despite the development of new drug treatments, including targeted therapy and immunotherapy, the risk of kidney involvement persists. The mechanisms of action of these new drugs are different from those of classical chemotherapy, and their use is usually associated with only mild to moderate side effects. In clinical trials, patients with pre-existing renal insufficiency are not present in most cases. Deterioration of renal function may significantly affect the treatment strategy and therefore careful renal function monitoring should be an integral part of each clinical trial.
Key words:
renal failure – toxicity – immunotherapy – chemotherapy
Submitted:
7. 7. 2017
Accepted:
7. 9. 2017
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Zdroje
1. Perazella MA, Moeckel GW. Nephrotoxicity from chemotherapeutic agents: clinical manifestations, pathobiology, and prevention/therapy. Semin Nephrol 2010; 30 (6): 570–581. doi: 10.1016/j.semnephrol.2010.09.005.
2. Launay-Vacher V, Oudard S, Janus N et al. Prevalence of renal insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer 2007; 110 (6): 1376–1384.
3. Huang WC, Levey AS, Serio AM et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7 (9): 735–740. doi: 10.1016/S1470-2045 (06) 70 803-8.
4. Gurevich F, Perazella MA. Renal effects of anti-angiogenesis therapy: update for the internist. Am J Med 2009; 122 (4): 322–328. doi: 10.1016/j.amjmed.2008.11. 025.
5. Klener P, Klener P Jr. Nová protinádorová léčiva a léčebné strategie v onkologii. Praha: Grada 2010: 119–120.
6. Kelly RJ, Billemont B, Rixe O. Renal toxicity of targeted therapies. Target Oncol 2009; 4 (2): 121–133. doi: 10.1007/s11523-009-0109-x.
7. Gordon MS, Margolin K, Talpaz M et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 2001; 19 (3): 843–850. doi: 10.1200/JCO.2001.19.3.843.
8. De Stefano A, Carlomagno C, Pepe S et al. Bevacizumab-related arterial hypertension as a predictive marker in metastatic colorectal cancer patients. Cancer Chemother Pharmacol 2011; 68 (5): 1207–1213. doi: 10.1007/s00280-011-1604-1.
9. Frangié C, Lefaucheur C, Medioni J et al. Renal thrombotic microangiopathy caused by anti-VEGF-antibody treatment for metastatic renal-cell carcinoma. Lancet Oncol 2007; 8 (2): 177–178. doi: 10.1016/S1470-2045 (07) 70037-2.
10. Roncone D, Satoskar A, Nadasdy T et al. Proteinuria in a patient receiving anti-VEGF therapy for metastatic renal cell carcinoma. Nat Clin Pract Nephrol 2007; 3 (5): 287–293. doi: 10.1038/ncpneph0476.
11. Eremina V, Jefferson JA, Kowalewska J et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008; 358 (11): 1129–1136. doi: 10.1056/NEJMoa0707330.
12. Izzedine H, Rixe O, Billemont B et al. Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis 2007; 50 (2): 203–218. doi: 10.1053/j.ajkd.2007.04.025.
13. Faivre S, Delbaldo C, Vera K et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006; 24 (1): 25–35. doi: 10.1200/JCO.2005.02.2194.
14. Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007; 356 (2): 115–124. doi: 10.1056/NEJMoa065044.
15. Abou-Alfa GK, Schwartz L, Ricci S et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24 (26): 4293–4300. doi: 10.1200/JCO.2005.01.3441.
16. Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (4): 378–390. doi: 10.1056/NEJMoa0708 857.
17. Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356 (2): 125–134. doi: 10.1056/NEJMoa060 655.
18. Izzedine H, Brocheriou I, Rixe O et al. Interstitial nephritis in a patient taking sorafenib. Nephrol Dial Transplant 2007; 22 (8): 2411. doi: 10.1093/ndt/gfm199.
19. Schlumberger M, Tahara M, Wirth LJ et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372 (7): 621–630. doi: 10.1056/NEJMoa1406470.
20. Yoshioka K, Takemura T, Murakami K et al. Identification and localization of epidermal growth factor and its receptor in the human glomerulus. Lab Invest 1990; 63 (2): 189–196.
21. Giro C, Berger B, Bölke E et al. High rate of severe radiation dermatitis during radiation therapy with concurrent cetuximab in head and neck cancer: results of a survey in EORTC institutes. Radiother Oncol 2009; 90 (2): 166–171. doi: 10.1016/j.radonc.2008.09. 007.
22. Vincenzi B, Galluzzo S, Santini D et al. Early magnesium modifications as a surrogate marker of efficacy of cetuximab-based anticancer treatment in KRAS wildtype advanced colorectal cancer patients. Ann Oncol 2011; 22 (5): 1141–1146. doi: 10.1093/annonc/mdq 550.
23. Miller AA, Murry DJ, Owzar K et al. Phase I and pharmacokinetic study of erlotinib for solid tumors in patients with hepatic or renal dysfunction: CALGB 60101. J Clin Oncol 2007; 25 (21): 3055–3060. doi: 10.1200/JCO.2007.11. 6210.
24. Lautrette A, Li S, Alili R et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005; 11 (8): 867–874. doi: 10.1038/nm1275.
25. Raymond E, Alexandre J, Faivre S et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol 2004; 22 (12): 2336–2347. doi: 10.1200/JCO.2004.08.116.
26. Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small cell lung cancer. Nature 2007; 448 (7153): 561–566. doi: 10.1038/nature05945.
27. Shaw AT, Kim DW, Nakagawa K et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013; 368 (25): 2385–2394. doi: 10.1056/NEJMoa1214886.
28. Kim E, Usari T, Polli A et al. Renal effects of crizotinib in patients (pts) with ALK-positive (+) advanced non-small cell lung cancer (NSCLC). J Thorac Oncol 2016; 11 (Suppl 4): S134. doi: 10.1016/S1556-0864 (16) 30 287-8.
29. Halpenny DF, McEvoy S, Li A et al. Renal cyst formation in patients treated with crizotinib for non-small cell lung cancer-Incidence, radiological features and clinical characteristics. Lung Cancer 2017; 106: 33–36. doi: 10.1016/j.lungcan.2017.01.010.
30. Lin YT, Wang YF, Yang JC et al. Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 2014; 9 (11): 1720–1725. doi: 10.1097/JTO.0000000000000 326.
31. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417 (6892): 949–954. doi: 10.1038/nature00766.
32. Meckbach D, Bauer J, Pflugfelder A et al. Survival according to BRAF-V600 tumor mutations – an analysis of 437 patients with primary melanoma. PLoS One 2014; 9 (1): e86194. doi: 10.1371/journal.pone.0086 194.
33. Jhaveri KD, Sakhiya V, Fishbane S. Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib. JAMA Oncol 2015; 1 (8): 1133–1134. doi: 10.1001/jamaoncol.2015. 1713.
34. Launay-Vacher V, Zimner-Rapuch S, Poulalhon N et al. Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients. Cancer 2014; 120 (14): 2158–2163. doi: 10.1002/cncr.28 709.
35. Flaherty KT, Infante JR, Daud A et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367 (18): 1694–1703. doi: 10.1056/NEJMoa1210093.
36. Robert C, Karaszewska B, Schachter J et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015; 372 (1): 30–39. doi: 10.1056/NEJMoa1412690.
37. Michels J, Spano JP, Brocheriou I et al. Acute tubular necrosis and interstitial nephritis during pemetrexed therapy. Case Rep Oncol 2009; 2 (1): 53–56. doi: 10.1159/000208 377.
38. Angarita FA, Cannell AJ, Abdul Razak AR et al. Trabectedin for inoperable or recurrent soft tissue sarcoma in adult patients: a retrospective cohort study. BMC Cancer 2016; 16: 30. doi: 10.1186/s12885-016-20 54-2.
39. Hodi FS, O‘Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363 (8): 711–723. doi: 10.1056/NEJMoa1003466.
40. Forde PM, Rock K, Wilson G et al. Ipilimumab-induced immune-related renal failure – a case report. Anticancer Res 2012; 32 (10): 4607–4608.
41. Menke J, Lucas JA, Zeller GC et al. Programmed death 1 ligand (PD-L) 1 and PD-L2 limit autoimmune kidney disease: distinct roles. J Immunol 2007; 179 (11): 7466–7477.
42. Motzer RJ, Escudier B, McDermott DF et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373 (19): 1803–1813. doi: 10.1056/NEJMoa1510665.
43. Cortazar FB, Marrone KA, Troxell ML et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 2016; 90 (3): 638–647. doi: 10.1016/j.kint.2016.04. 008.
44. Larkin J, Chiarion-Sileni V, Gonzalez R et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373 (1): 23–34. doi: 10.1056/NEJMoa1504030.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2018 Číslo 1
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Surgical Treatment of Ampullary Adenocarcinoma – Single Center Experience and a Review of Literature
- Curcumine (Turmeric – Curcuma longa) as a Supportive Phytotherapeutic Treatment in Oncology
- Pedicled Flaps for Reconstruction of Head and Neck Region
- Current Status of Checkpoint Inhibitors in the Treatment of Esophageal and Gastric Tumors – Overview of Studies