#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Controversy over the Use of Proton Therapy for the Treatment of Tumors of Central Nervous System


Authors: Petera Jiří
Authors place of work: Klinika onkologie a radioterapie FN a LF Hradec Králové
Published in the journal: Klin Onkol 2018; 31(1): 24-27
Category: Review
doi: https://doi.org/10.14735/amko201824

Summary

Background:
Proton beam therapy (PBT) is one of the most discussed topics in contemporary oncology. PBT is characterized by certain physical properties that make it theoretically better as a treatment than standard photon therapy. On the other hand, there are some uncertainties regarding the localization of the dose peak (Bragg peak) in real clinical situations and the value of radiobiological effectiveness at the end of proton beam. Unfortunately, the high expectations of PBT have not been fulfilled in published clinical studies.

Aim:
In the present article, the results of PBT are compared with those of standard photon therapy for the treatment of low-and high-grade gliomas, pituitary adenomas, vestibular schwannomas, chordomas and chondrosarcomas, and pediatric central nervous system tumors. PBT was not better in tumor control or in reducing toxicity than photon therapy. The higher risk of post-radiation brain tissue necrosis after PBT is alarming. PBT is mostly considered for pediatric tumors, because the radiobiological models predict lower damage to neurocognitive functions and a reduction in secondary malignancies. However, this hypothesis has its opponents and sufficient clinical data to justify the models are still lacking. The cost of PBT is several times higher than that of photon therapy.

Results:
PBT is a revolutionary technology in modern radiotherapy, but so far, clinical data have not proved it to be superior to that of standard photon therapy. PBT should be considered on an individual basis in cases where modern photon therapy cannot meet the dose limits of healthy tissues.

Key words:
proton therapy – neoplasms – central nervous system

Submitted:
24. 10. 2017

Accepted:
23. 11. 2017

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers


Zdroje

1. Jakobi A, Luhr A, Stutzer K et al. Increase in tumor control and normal tissue complication probabilities in advanced head and neck cancer for dose escalated intensity modulated photon and proton therapy. Front Oncol 2015; 5: 256. doi: 10.3389/fonc.2015.00256.

2. Chang JY, Jabbour SK, De Ruysscher D et al. Consensus statent on proton therapy in early stage and locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2016; 95 (1): 505–516. doi: 10.1016/j.ijrobp.2016.01.036.

3. Dabaja BS, Mikhaeel NG. In the battle between protons and photons for hematologic malignancies, the patient must win. Int J Radiat Oncol Biol Phys 2016; 95 (1): 43–45. doi: 10.1016/j.ijrobp.2015.09.043.

4. Liao ZX, Lee JJ, Komaki R et al. Bayesian randomisation trial comparing intensity modulated radiation therapy versus passively scattered proton therapy for locally advanced non small cell lung carcinoma. J Clin Oncol 2016, 34 (Suppl 15): abstr. 8500.

5. Hauswald H, Rieken S, Ecler S et al. First experiences in treatment of low grade glioma grade I and II with proton therapy. Radiat Oncol 2012; 7: 189. doi: 10.1186/1748-717X-7-189.

6. Wilkinson B, Morgan H, Gondi V et al. Low levels of acute toxicity associated with proton therapy for lowgrade glioma: a Proton Collaborative Group study. Int J Radiat Oncol Biol Phys 2016; 96 (2S): E135. doi: 10.1016/j.ijrobp.2016.06.930.

7. Fitzek MM, Thorton AF, Rabinov JD et al. Accelerated fracionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of phase II prospective trial. J Neurosurg 1999; 91 (2): 251–260. doi: 10.3171/jns.1999.91.2.0251.

8. Fitzek MM, Thornton AF, Harsh G et al. Dose-escalation with proton/photon irradiation for Daumas-Duport lower-grade glioma. Results of an institutional phase I/II trial. Int J Radiat Oncol Biol Phys 2001; 51 (1): 131–137.

9. Ronson BB, Schulte RW, Han KP et al. Fractionated proton beam irradiation of pituitary adenomas. Int J Radiat Oncol Biol Phys 2006; 64 (2): 425–434. doi: 10.1016/j.ijrobp.2005.07.978.

10. Petit JH, Biller BM, Coen JJ et al. Proton stereotactic radiosurgery in management of persistent acromegaly. Endocr Pract 2007; 13 (7): 726–734. doi: 10.4158/EP.13.7.726.

11. Wendel F, Thomton AF, Finkelstein D et al. Benign meningeoma: partially resected, biopsiedand recurrent intracranal tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys 2000; 48 (5): 1363–1370.

12. Vermimmen EJ, Harris JK, Wilson JA et al. Stereotactic proton beam therapy of skull base meningeomas. Int J Radiat Oncol Biol Phys 2001; 49 (1): 99–105.

13. Noel G, Bollet MA, Calugaru V et al. Functional outcome of patients with benign meningeoma treated by 3D conformal irradiation with s combination of photons and protons. Radiat Oncol Biol Phys 2005; 62 (5): 1412–1422. doi: 10.1016/j.ijrobp.2004.12.048.

14. McDonald MW, Plankenhom DA, McMullen KP et al. Proton therapy for atypical meningeomas. J Neurooncol 2015; 123 (1): 123–128. doi: 10.1007/s11060-015-1770-9.

15. Boskos C, Feivret L, Noel G et al. Combined proton and photon conformal radiotherapy for intracranial atypical and malignant meningeoma. In J Radiat Oncol Biol Phys 2009; 75 (2): 399–406. doi: 10.1016/j.ijrobp.2008.10.053.

16. Weber DC, Schenider R, Goitein G et al. Spot scan-ning based proton therapy for intracranial meningeoma: long-term results from the Paul Scherrer Institute. Int J Radiat Oncol Biol Phys 2012; 83 (3): 865–871. doi: 10.1016/j.ijrobp.2011.08.027.

17. Combs SE. Does proton therapy have a future in CNS tumors? Curr Treat Options Neurol 2017; 19 (3): 12. doi: 10.1007/s11940-017-0447-4.

18. Vernimmen FJ, Mohamed Z, Slabbert JP et al. Long term results of stereotactic proton beam radiotherapy for acoustic neuromas. Radiother Oncol 2009; 90 (2): 208–212. doi: 10.1016/j.radonc.2008.11.004.

19. Bush DA, McAllister CJ, Loredo LN. Fractionated proton beam radiotherapy for acoustic neuroma. Neurosurgery 2002; 50 (2): 270–273.

20. Debus J, Schulz-Ertner D, Schad L et al. Sterotactic fractionated radiotherapy for chordomas and chondrosarcomas of the skull base. In J Radiat Oncol Biol Phys 2000; 47 (3): 591–596.

21. Gay E, Sekhard LN, Rubinstein E et al. Chordomas and chondrosarcomas of the cranial base: results and follow-up of 60 patients. Neurosurgery 1995; 36 (5): 887–896.

22. Debus J, Schulz-Ertner D, Schad D et al. Stereotactic fractionated radiotherapy fior chordomas nad chondrosarcomas of the skull base. Int J Radiat Oncol Biol Phys 2000; 47: 591–596.

23. Gay E, Sekhar LN, Rubinstein E et al. Chordomas nad chondrosarcomas of the cranial base: Results and follow up of 60 patients. Neurosurgery 1995; 36 (5): 887–896.

24. Combs EA, Laperriere N, Brada M. Clinical controversies: proton radiation therapy for brain and skull base tumors. Seminars in radiation oncology 2013; 23 (2): 120–128. doi: 10.1016/j.semradonc.2012.11.011.

25. Weber DC, Badiyan S, Malyapa R et al. Long-term outocomes and prognostic factors of skull-base chondrosarcomas patients treated with pencil-beam scanning proton therapy at the Paul Scherre Institute. Neuro Oncol 2016; 18 (2): 236–243. doi: 10.1093/neuonc/nov154.

26. Sahgal A, Chan MW, Atenafu EG et al. Image-guided, intensity-modulated radiation therapy (IG-IMRT) for skull base chordoma and chondrosarcoma: preliminary outcomes. Neuro Oncol 2015; 17 (6): 889–894. doi: 10.1093/neuonc/nou347.

27. Merchant TE. Clinical Controversies: proton therapy for pediatric tumors. Seminars Radiat Oncol 2013; 23 (2): 97–108. doi: 10.1016/j.semradonc.2012.11.008.

28. Eaton BR, Esiashvili N, Kim S et al. Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: a comparison of dease-control and overal survival. Int J Radiat Oncol Biol Phys 2016; 94 (1): 133–138. doi: 10.1016/j.ijrobp.2015.09.014.

29. Murphy ES, Merchant TE, Wu S et al. Necrosis after craniospinal irradiation. Results from a prospective series of children with central nervous system tumors. Int J Radiat Oncol Biol Phys 2012; 83 (5): 655–660. doi: 10.1016/j.ijrobp.2012.01.061.

30. Bishop MW, Hummel TR, Leach J et al. Radiation injury in pediatric patents with CNS tumors treated with proton beam radiation therapy. Neuro Oncol 2012; 14: 148–156.

31. Peeler CR, Christofer R, Mirkovic D et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol 2016; 121 (3): 395–401. doi: 10.1016/j.radonc.2016.11.001.

32. Kahalley LS, Ris MD, Grosshans DR et al. Comparing intelligence quotient change after treatment with proton versus photon radiation therapy for pediatric brain tumors. J of Clin Oncol 2016; 34 (10): 1043–1049. doi: 10.1200/JCO.2015.62.1383.

33. Brodin NP, Rosenschold PM, Aznar MC et al. Radiobiological risk estimates of adverse events and secondary cancer for proton and phioton radiation therapy of pediatric medulloblastoma. Acta Oncologica 2011; 50 (6): 806–816. doi: 10.3109/0284186X.2011.582514.

34. Newhauser WD, Fontenot JD, Mahajan A et al. The risk of developing a second cancer after receiving cranioapinal proton irradiation. Phys Med Biol 2009; 54 (8): 2277–2291. doi: 10.1088/0031-9155/54/8/002.

35. Chung CS, Yock TI, Nelson K et al. Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys 2013; 87 (1): 46–52. doi: 10.1016/j.ijrobp.2013.04.030.

36. Bekelman JE. Subsequent malignancies after photon versus proton radiation therapy (editorial). Int J Radiat Oncol Biol Phys 2013; 87 (1): 10–12. doi: 10.1016/j.ijrobp.2013.05.016.

37. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 2011; 11 (6): 438–448. doi: 10.1038/nrc3069.

38. Kubeš J, Vítek P, Dědečková K et al. Velmi pozdní následky radioterapie – limitující faktor současných radioterapeutických technik. Klin Onkol 2014; 27 (3): 161–165. doi: 10.14735/amko2014161.

39. Mraček J, Mork J, Svoboda T et al. Radionekróza horní krční míchy po protonovém ozáření u nemocné po radikální resekci ependymomu IV. komory mozkové. Klin Onkol 2017; 30 (4): 264–272. doi: 10.14735/amko2017264.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo 1

2018 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#