Challenges and solutions in management of cardiotoxicity induced by checkpoint inhibitors
Authors:
prof. MUDr. Mladosievičová Beáta, CSc. 1; MUDr. Országhová Zuzana jr. 2; MUDr. Jablonická Magdaléna 3; MUDr. Rečková Mária, PhD. 4,5; MUDr. Chovanec Michal 6; porf. MUDr. Mego Michal, PhD. 6
Authors place of work:
Oddelenie klinickej patofyziológie, LF UK, Bratislava, Slovenská republika
1; II. onkologická klinika LF UK a NOÚ, Bratislava, Slovenská republika
2; Onkologická klinika SZU, FNsP F. D. Roosevelta, Banská Bystrica, Slovenská republika
3; NOI, Bratislava, Slovenská republika
4; POKO Poprad, s. r. o., Slovenská republika
5
Published in the journal:
Klin Onkol 2020; 33(5): 350-355
Category:
Review
doi:
https://doi.org/10.14735/amko2020350
Summary
Background: The use of immune checkpoint inhibitors has dramatically improved the prognosis of many cancer patients. However, their increasing use has also revealed several unexpected side effects – including cardiovascular complications. Increased attention was paid to them in recent years only, especially due to their potentially fatal character. Checkpoint inhibitors cardiotoxicity includes myocarditis, rhythm disorders (atrioventricular blocks, atrial and ventricular arrhythmias), pericarditis, myocardial infarction, left ventricular dysfunction/heart failure, dilated cardiomyopathy, cardiogenic shock and sudden cardiac death. The risk of ICI-associated cardiotoxicity is increased in patients treated with dual immune therapy, in combination with other cardiotoxic drugs, with preexisting cardiac damage, diabetes mellitus, underlying autoimmune disease and some other factors. Currently, there are no guidelines for prediction and management of ICI-associated cardiotoxicity.
Purpose: Herein, we briefly summarize the findings regarding checkpoint inhibitor-induced cardiotoxicity and provide a new definition of anti-tumor-induced myocarditis together with a suitable design for immune- induced myocarditis management prepared by experts from the field of cardiooncology.
Keywords:
myocarditis – cardiotoxicity – immunotherapy – immune checkpoint inhibitors – Adverse events
Zdroje
1. Mladosievičová et al. Kardioonkológia. 2. prepracované a doplnené vyd. Praha: Grada Publishing 2014: 208.
2. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 2016; 375 (15): 1457–1467. doi: 10.1056/NEJMra1100265.
3. Urbanová D, Bubanská E, Hrebík M et al. Ťažké srdcové zlyhávanie ako prejav neskorej antracyklínovej kardiotoxicity – kazuistika. Klin Onkol 2009; 22 (1): 34–38.
4. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018; 62: 29–39. doi: 10.1016/j.intimp.2018.06.001.
5. Vrána D. Matzenauer M, Melichar B. Současné postavení checkpoint inhibitorů v léčbě nádorů jícnu a žaludku – přehled studií. Klin Onkol 2018; 31 (1): 35–39. doi: 10.14735/amko201835.
6. Tarrio ML, Grabie N, Bu DX et al. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol 2012; 188 (10): 4876–4884. doi: 10.4049/jimmunol.1200389.
7. Wang J, Okazaki IM, Yoshida T et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 2010; 22 (6): 443–452. doi: 10.1093/intimm/dxq026.
8. Zadok OI, Ben-Avraham B, Nohria A et al. Immune-checkpoint inhibitor-induced fulminant myocarditis and cardiogenic shock. JACC: Cardiooncology 2019; 1 (1): 141–144. doi: 10.1016/j.jaccao.2019.07.004.
9. Varricchi G, Galdiero MR, Marone G et al. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2017; 2 (4): 1–12. doi: 10.1136/esmoopen-2017-000247.
10. Johnson DB, Balko JM, Compton ML et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 2016; 375 (18): 1749–1755. doi: 10.1056/NEJMoa1609214.
11. Hu YB, Zhang Q, Li HJ et al. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res 2017; 6 (Suppl 1): 8–20. doi: 10.21037/tlcr.2017.12.10.
12. Escudier M, Cautela J, Malissen N et al. Clinical features, management, and outcomes of immune checkpoint inhibitor–related cardiotoxicity. Circulation 2017; 136 (21): 2085–2087. doi: 10.1161/CIRCULATIONAHA.117.030571.
13. Moslehi JJ, Salem JE, Sosman JA et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018; 391 (10124): 933. doi: 10.1016/S0140-6736 (18) 30533-6.
14. Mahmood SS, Fradley MG, Cohen JV et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 2018; 71 (16): 1755–1764. doi: 10.1016/j.jacc.2018.02.037.
15. Lyon AR, Yousaf N, Battisti NM et al. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol 2018; 19 (9): e447–458. doi: 10.1016/S1470-2045 (18) 30457-1.
16. Wang DY, Okoye GD, Neilan TG et al. Cardiovascular toxicities associated with cancer immunotherapies. Curr Cardiol Rep 2017; 19 (3): 21. doi: 10.1007/s11886-017-0835-0.
17. Ganatra S, Neilan TG. Immune checkpoint inhibitor-associated myocarditis. Oncologist 2018; 23 (8): 1–8. doi: 10.1634/theoncologist.2018-0130.
18. Matsuo K, Ishiguro T, Najama T et al. Nivolumab-induced myocarditis successfully treated with corticosteroid therapy: A case report and review of the literature. Intern Med 2019; 58 (16): 23672–23372. doi: 10.2169/internalmedicine.2596-18.
19. Bonaca MP, Olenchock BA, Salem JE et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 2019; 140 (2): 809–891. doi: 10.1161/CIRCULATIONAHA.118.034497.
20. Champion SM, Stone JR. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod Pathol 2020; 33 (1): 99–108. doi: 10.1038/s41379-019-0363-0.
21. Huertas RM, Saavedra Serrano C, Perna C et al. Cardiac toxicity of immune-checkpoint inhibitors: a clinical case of nivolumab-induced myocarditis and review of the evidence and new challenges. Cancer Manag Res 2019; 11: 4541–4548. doi: 10.2147/CMAR.S185202.
22. Voskens CJ, Goldinger SM, Loquai C et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One 2013; 8 (1): e53745. doi: 10.1371/journal.pone.0053745.
23. Ribas A, Hamid O, Daud A et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 2016; 315 (15): 1600–1609. doi: 10.1001/jama.2016.4059.
24. Herbst RS, Baas P, Kim DW et al. Pembrolizumab versus docetaxel for previously treated, PDL1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387 (10027): 1540–1550. doi: 10.1016/S0140-6736 (15) 01281-7.
25. Tadokoro T, Keshino E, Makiyama A et al. Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab. Circ Heart Fail 2016; 9 (10): e003514. doi: 10.1161/CIRCHEARTFAILURE.116.003514.
26. Zimmer L, Goldinger SM, Hofmann L et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016; 60: 210–225. doi: 10.1016/j.ejca.2016.02.024.
27. Gibson R, Delaune J, Szady A et al. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep 2016; 2016: bcr2016216228. doi: 10.1136/bcr-2016-216228.
28. Roth ME, Muluneh B, Jensen BC et al. Left ventricular dysfunction after treatment with ipilimumab for metastatic melanoma. Am J Ther 2016; 23 (6): e1925-e1928. doi: 10.1097/MJT.0000000000000430.
29. Yun S, Vincelette ND, Mansour I et al. Late onset ipilimumab-induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep Oncol Med 2015; 2015: 794842. doi: 10.1155/2015/794842.
30. Geisler BP, Raad RA, Esaian D et al. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J Immunother Cancer 2015; 3: 4. doi: 10.1186/s40425-015-0048-2.
31. Salem JE, Manouchehri A, Moey M et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol 2018; 19 (12): 1579–1589. doi: 10.1016/S1470-2045 (18) 30608-9.
32. Curigliano G, Lenihan D, Fradley M et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol 2020; 31 (2): 171–190. doi: 10.1016/j.annonc.2019.10.023.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2020 Číslo 5
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- New trends in neoadjuvant therapy of locally advanced rectal cancer from a surgeon’s perspective – a commentary
- Current perspectives on the treatment of BRAF mutated colorectal carcinoma
- Extravasation (paravasation) of chemotherapy drugs – updated recommendations (2020) for standard care in the Czech Republic from the cooperation of the Supportive Care Group of the Czech Society for Oncology, Czech Society for Hematology, Oncology Section of the Czech Nurses Association and the Society for Ports and Permanent Catheters
- Systemic treatment for hepatocellular carcinoma