Current perspectives on the treatment of BRAF mutated colorectal carcinoma
Authors:
MUDr. Batko Stanislav
Authors place of work:
Onkologická klinika 2. LF a FN Motol
Published in the journal:
Klin Onkol 2020; 33(5): 328-338
Category:
Review
doi:
https://doi.org/10.14735/amko2020328
Summary
Background: Worldwide metastatic colorectal cancer is the second most common cause of death attributable to cancer. Advances in molecular diagnostics led to recognition of several molecular subtypes of this disease. BRAF mutated colorectal cancer define specific challenging subgroup associated with dismal prognosis, lower rate of response rate, shorter progression free survival and overall survival. Current treatment choices are associated with poor outcomes. For the first line treatment doublet or triplet chemotherapy plus antiangiogenic antibody is used. To date, there were no reasonable treatment options in the second line settings. Recently published BEACON trial sets new standard of treatment with combination of encorafenib plus cetuximab, which led to significantly longer overall survival and overall response compared to standard therapy. Furthermore, this combination has shown well-tolerated safety profile with manageable toxicities.
Purpose: The aim of this article is a review of current treatment options for BRAF mutated colorectal cancer.
Keywords:
metastatic colorectal cancer – cetuximab – BRAF V600E – encorafenib – binimetinib – BEACON
Zdroje
1. International Agency for Research on Cancer. WHO, colorectal cancer, Globalcan 2018. [online]. Available from: https: //gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf.
2. Fransén K, Klintenäs M, Osterström A et al. Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 2004; 25 (4): 527–533. doi: 10.1093/carcin/bgh049.
3. De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11 (8): 753–762. doi: 10.1016/S1470-2045 (10) 70130-3.
4. Tol J, Nagtegaal ID, Punt CJ et al. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361 (1): 98–99. doi: 10.1056/NEJMc0904160.
5. Tie J, Gibbs P, Lipton L et al. Optimizing targeted therapeutic development: Analysis of a colorectal cancer patient population with the BRAFV600E mutation. Int J Cancer 2011; 128 (9): 2075–2084. doi: 10.1002/ijc.25555.
6. Sorbye H, Dragomir A, Sundström M et al. High BRAF mutation frequency and marked survival differences in subgroups according to KRAS/BRAF mutation status and tumor tissue availability in a prospective population-based metastatic colorectal cancer cohort. PLoS One 2015; 10 (6): 1–16. doi: 10.1371/journal.pone.0131046.
7. Greystoke A, Mullamitha SA. How many diseases are colorectal cancer? [online]. Available from: https: //www.hindawi.com/journals/grp/2012/564741/.
8. Ogino S, Shima K, Meyerhardt J et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: Results from intergroup trial CALGB 89803. Clin Cancer Res 2012; 18 (3): 890–900. doi: 10.1158/1078-0432.
9. Lochhead P, Kuchiba A, Imamura Y et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 2013; 105 (15): 1151–1156. doi: 10.1093/jnci/djt173.
10. Clancy C, Burke JP, Kalady MF et al. BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis 2013; 15 (12): 711–718. doi: 10.1111/codi.12427.
11. Gonsalves WI, Mahoney MR, Sargent DJ et al. Patient and tumor characteristics and BRAF and KRAS mutations in colon cancer, NCCTG/Alliance N0147. J Natl Cancer Inst 2014; 106 (7): 1–8. doi: 10.1093/jnci/dju106.
12. Yaeger R, Cercek A, Chou JF et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer 2014; 120 (15): 2316–2324. doi: 10.1002/cncr.28729.
13. Prasanna T, Karapetis CS, Roder D et al. The survival outcome of patients with metastatic colorectal cancer based on the site of metastases and the impact of molecular markers and site of primary cancer on metastatic pattern. Acta Oncol 2018; 57 (11): 1438–1444. doi: 10.1080/0284186X.2018.1487581.
14. Clarke CN, Kopetz ES. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol 2015; 6 (6): 660–667. doi: 10.3978/j.issn.2078-6891.2015.077.
15. Roth AD, Tejpar S, Delorenzi M et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010; 28 (3): 466–474. doi: 10.1200/JCO.2009.23.3452.
16. Samowitz WS, Sweeney C, Herrick J et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005; 65 (14): 6063–6069. doi: 10.1158/0008-5472.CAN-05-0404.
17. Lochhead P, Kuchiba A, Imamura Y et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst 2013; 105 (15): 1151–1156. doi: 10.1093/jnci/djt173.
18. Sinicrope FA, Mahoney MR, Smyrk TC et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol 2013; 31 (29): 3664–3672. doi: 10.1200/JCO.2013.48.9591.
19. Bokemeyer C, Van Cutsem E, Rougier P et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer 2012; 48 (10): 1466–1475. doi: 10.1016/j.ejca.2012.02.057.
20. Maughan TS, Adams RA, Smith CG et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 2011; 377 (9783): 2103–2114. doi: 10.1016/S0140-6736 (11) 60613-2.
21. Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369 (11): 1023–1034. doi: 10.1056/NEJMoa1305275.
22. Stintzing S, Jung A, Rossius L et al. Mutations within the EGFR signaling pathway: influence on efficacy in FIRE-3–A randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type (WT) KRAS (exon 2) metastatic colorectal cancer (mCRC) patients. J Clin Oncol 2014; 32 (3_suppl): 445–445. doi: 10.1200/jco.2014.32.3_suppl.445.
23. Cremolini C, Loupakis F, Antoniotti C et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015; 16 (13): 1306–1315. doi: 10.1016/S1470-2045 (15) 00122-9.
24. Innocenti F, Ou FS, Qu X et al. Mutational analysis of patients with colorectal cancer in CALGB/SWOG 80405 identifies new roles of microsatellite instability and tumor mutational burden for patient outcome. J Clin Oncol 2019; 37 (14): 1217–1227. doi: 10.1200/JCO.18.01798.
25. Peeters M, Oliner KS, Price TJ et al. Updated analysis of KRAS/NRAS and BRAF mutations in study 20050181 of panitumumab (pmab) plus FOLFIRI for second-line treatment (tx) of metastatic colorectal cancer (mCRC). [online]. Available from: https: //ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.3568.
26. Maiello E, Pomella V, Wirapati P et al. Aflibercept efficacy according to sidedness, RAS and BRAF mutations. Findings from the VELOUR trial in second line therapy of advanced colorectal cancer patients. [online]. Available from: https: //www.annalsofoncology.org/article/S0923-7534 (20) 34683-4/fulltext.
27. Yoshino T, Obermannova R, Bodoky G et al. Are BRAF mutated metastatic colorectal cancer (mCRC) tumors more responsive to VEGFR-2 blockage? Analysis of patient outcomes by RAS/RAF mutation status in the RAISE study—A global, randomized, double-blind, phase III study. [online]. Available from: https: //ascopubs.org/doi/10.1200/JCO.2018.36.4_suppl.622.
28. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000; 351 (Pt 2), 289–305.
29. Yang SH, Sharrocks AD, Whitmarsh AJ et al. MAP kinase signalling cascades and transcriptional regulation. Gene 2013; 513 (1): 1–13. doi: 10.1016/j.gene.2012.10.033.
30. Burotto M, Chiou VL, Lee JM et al. The MAPK pathway across different malignancies: A new perspective. Cancer 2014; 120 (22): 3446–3456. doi: 10.1002/cncr.28864.
31. Liu F, Yang X, Geng M et al. Targeting ERK, an Achilles‘ heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8 (4): 552–562. doi: 10.1016/j.apsb.2018.01.008.
32. Terrel EM, Durrant D, Ritt D et al. RAF binding preferences dictate RAS-mediated tumorigenesis. Cancer Discov 2019; 9 (12): 8. doi: 10.1158/2159-8290.
33. McCubrey JA, Steelman LS, Chappell WH et al. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3 (9): 954–987. doi: 10.18632/oncotarget.652.
34. Garcia SE, Argiles G, Elez E et al. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol 2017; 28 (11): 2648–2657. doi: 10.1093/annonc/mdx401.
35. Shimada Y, Tajima Y, Nagahashi M et al. Clinical significance of BRAF Non-V600E mutations in colorectal cancer: A retrospective study of two institutions. J Surg Res 2018; 232: 72–81. doi: 10.1016/j.jss.2018.06.020.
36. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417 (6892): 949–954. doi: 10.1038/nature00766
37. Pakneshan S, Salajegheh A, Anthony R et al. Clinicopathological relevance of BRAF mutations in human cancer. Pathology 2013; 45 (4): 346–356. doi: 10.1097/PAT.0b013e328360b61d.
38. Kopetz S, Desai J, Chan E et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 2015; 33 (34): 4032–4038. doi: 10.1200/JCO.2015.63.2497.
39. Corcoran RB, Ebi H, Turke AB et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2 (3): 227–235. doi: 10.1158/2159-8290.CD-11-0341.
40. Prahallad A, Sun C, Huang S et al. Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation of EGFR. Nature 2012; 483 (7387): 100–103. doi: 10.1038/nature10868.
41. Janku F. Advances on the BRAF front in colorectal cancer. Cancer Discov 2018; 8 (4): 389–391. doi: 10.1158/2159-8290.CD-18-0125.
42. Hyman DM, Puzanov I, Subbiah V et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 2015; 373 (8): 726–736. doi: 10.1056/NEJMoa1502309.
43. Gomez-Roca CA, Delord J, Robert C et al. 535P – encorafenib (LGX818), an oral BRAF inhibitor, in patients (pts) with BRAF V600E metastatic colorectal cancer (mCRC): results of dose expansion in an open-label, phase 1 study. Ann Oncol 2014; 25 (4 suppl): 182–183.
44. Yaeger R, Cercek A, O’Reilly EM et al. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res 2015; 21 (6): 1313–1320. doi: 10.1158/1078-0432.CCR-14-2779.
45. Van Cutsem E, Atreya C, Andre’ T et al. LBA-07 Updated Results of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). [online]. Available from: https: //www.annalsofoncology.org/article/S0923-7534 (19) 50919-X/fulltext.
46. van Geel R, Tabernero J, Elez E et al. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAFmutant colorectal cancer. Cancer Discov 2017; 7 (6): 610–619. doi: 10.1158/2159-8290.CD-16-0795.
47. Tabernero J, Geel RV, Guren TK et al. Phase 2 results: encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). J Clin Oncol 2016; 34 (15 suppl): 3544–3544. doi: 10.1200/JCO.2016.34.15_suppl.3544.
48. Corcoran RB, Atreya CE, Falchook GS et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600-mutant colorectal cancer. J Clin Oncol 2015; 33 (34): 4023–4031. doi: 10.1158/2159-8290.CD-17-1226.
49. Hong DS, Morris VK, El Osta B et al. Phase IB study of vemurafenib in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with BRAFV600E mutation. Cancer Discov 2016; 6 (12): 1352–1365. doi: 10.1158/2159-8290.CD-16-0050.
50. Kopetz, S, McDonough SL, Morris VK et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG 1406). J Clin Oncol 2017; 35 (4 suppl): 520–520.
51. Kopetz S, Grothey A, Yaeger R et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N Engl J Med 2019; 381: 1632–1643. doi: 10.1056/NEJMoa1908075.
52. Pietrantonio F, Petrelli F, Coinu A et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 2015; 51 (5): 587–594. doi: 10.1016/j.ejca.2015.01.054.
53. Rowland A, Dias MM, Wiese MD et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015; 112 (12): 1888–1894. doi: 10.1038/bjc.2015.325.
54. Kopetz S, Grothey A, Van Cutsem E et al. Encorafenib plus cetuximab with or without binimetinib for BRAF V600E metastatic colorectal cancer: Updated survival results from a randomized, three-arm, phase III study versus choice of either irinotecan or FOLFIRI plus cetuximab (BEACON CRC). J Clin Oncol 2020; 38 (15 suppl): 4001–4001.
55. Kopetz S, Grothey A, Van Cutsem E et al. Encorafenib plus cetuximab with or without binimetinib for BRAF V600E-mutant metastatic colorectal cancer: Quality-of-life results from a randomized, three-arm, phase III study versus the choice of either irinotecan or FOLFIRI plus cetuximab (BEACON CRC). J Clin Oncol 2020; 38 (15 suppl): 4039–4039.
56. Kopetz S, Grothey A, Van Cutsem E et al. Encorafenib plus cetuximab with or without binimetinib for BRAF V600E-mutant metastatic colorectal cancer: Quality-of-life results from a randomized, three-arm, phase III study versus the choice of either irinotecan or FOLFIRI plus cetuximab (BEACON CRC). [online]. Available from: https: //ascopubs.org/doi/abs/10.1200/JCO.2020.38.4_suppl.8
57. Grothey A, Yaeger R, Paez D et al. ANCHOR CRC: a phase 2, open-label, single arm, multicenter study of encorafenib (ENCO), binimetinib (BINI), plus cetuximab (CETUX) in patients with previously untreated BRAF V600E-mutant metastatic colorectal cancer (mCRC). [online]. Available from: https: //www.annalsofoncology.org/article/S0923-7534 (19) 30911-1/abstract.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2020 Číslo 5
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- New trends in neoadjuvant therapy of locally advanced rectal cancer from a surgeon’s perspective – a commentary
- Current perspectives on the treatment of BRAF mutated colorectal carcinoma
- Extravasation (paravasation) of chemotherapy drugs – updated recommendations (2020) for standard care in the Czech Republic from the cooperation of the Supportive Care Group of the Czech Society for Oncology, Czech Society for Hematology, Oncology Section of the Czech Nurses Association and the Society for Ports and Permanent Catheters
- Systemic treatment for hepatocellular carcinoma