#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hypoplastic form of myelodysplastic neoplasm


Authors: H. Votavová 1;  Z. Lenertová 1,2;  T. Votava 3;  M. Beličková 1
Authors‘ workplace: Ústav hematologie a krevní transfuze, Praha 2 1. lékařská fakulta, UK Praha 3 Dětská klinika LF v Plzni UK a FN Plzeň 1
Published in: Klin Onkol 2023; 36(3): 206-214
Category: Review
doi: https://doi.org/10.48095/ccko2023206

Overview

Background: Hypoplastic myelodysplastic neoplasm (MDS-h) is a rare hematopoietic disorder characterized by peripheral cytopenia, hypoplasia (cellularity ≤ 25%) and dysplastic changes in the bone marrow. Compared to normo- /hypercellular MDS, in addition to hypocellularity, MDS-h patients have more profound neutropenia and thrombocytopenia, a lower percentage of blasts, and less frequent abnormal karyotype. It is difficult to distinguish MDS-h from aplastic anemia in differential diagnosis. Abnormal karyotype is found in 15–50% of MDS-h patients and the most common chromosomal aberrations include −5/del (5q), −7/del (7q), +8, 17pLOH, del (20q), UPD at 4q, 11q, 13q, and 14q. Approximately 35% of MDS-h patients harbour somatic mutations that are most often detected in PIGA, TET2, DNMT3A, RUNX1, NPM1, ASXL1, STAG2, and APC genes. An autoimmune destruction of hematopoietic stem cells (HSCs) or hematopoietic progenitor cells (HPCs) mediated by abnormally activated T cells plays a key role in the pathophysiology of MDS-h. Expanded T cells overproduce proinflammatory cytokines (IFN- g and TNF-a), which inhibit proliferation and induce apoptosis of HSC/HPCs. The antigens that trigger the immune response are not known, but potential candidates have been suggested such as WT1 protein and HLA class I molecules. MDS-h does not represent a phenotypically homogeneous subtype of MDS, but rather it is a mixed entity comprising both patients showing features similar to myelodysplastic neoplasm and patients with features of non-malignant bone marrow failure. Determining the prevailing phenotype in MDS-h is important for choosing the optimal treatment and prognosis prediction. Purpose: The aim of this article is to point out an interesting hypoplastic MDS, the diagnosis of which is difficult, and to provide an overview of its main clinical-pathological features, genetic background, and mechanisms of aberrant immune response.

Keywords:

myelodysplastic syndromes – bone marrow failure disorders – aplastic anemia – physiopathology – genetic background


Sources

1. Sekeres MA. The epidemiology of myelodysplastic syndromes. Hematol Oncol Clin North Am 2010; 24 (2): 287–294. doi: 10.1016/j.hoc.2010.02.011.

2. Khoury JD, Solary E, Abla O et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022; 36 (7): 1703–1719. doi: 10.1038/s41375-022-01613-1.

3. Fattizzo B, Serpenti F, Barcellini W et al. Hypoplastic myelodysplastic syndromes: just an overlap syndrome? Cancers (Basel) 2021; 13 (1): 132. doi: 10.3390/cancers13010132.

4. Yue G, Hao S, Fadare O et al. Hypocellularity in myelodysplastic syndrome is an independent factor which predicts a favorable outcome. Leuk Res 2008; 32 (4): 553–558. doi: 10.1016/j.leukres.2007.08.006.

5. Yao CY, Hou HA, Lin TY et al. Distinct mutation profile and prognostic relevance in patients with hypoplastic myelodysplastic syndromes (h-MDS). Oncotarget 2016; 7 (39): 63177–63188. doi: 10.18632/oncotarget.11050.

6. Hofmann I. Pediatric myelodysplastic syndromes. J Hematopathol 2015; 8: 127–141.

7. Čermák J. Aplastic anemia. Vnitr Lek 2018; 64 (5): 501–507.

8. Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood 2016; 128 (3): 337–347. doi: 10.1182/blood-2016-01-636381.

9. Bennett JM, Orazi A. Diagnostic criteria to distinguish hypocellular acute myeloid leukemia from hypocellular myelodysplastic syndromes and aplastic anemia: recommendations for a standardized approach. Haematologica 2009; 94 (2): 264–268. doi: 10.3324/haematol.13755.

10. Bono E, McLornan D, Travaglino E et al. Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome. Leukemia 2019; 33 (10): 2495–2505. doi: 10.1038/s41375-019-0457-1.

11. Marisavljevic D, Cemerikic V, Rolovic Z et al. Hypocellular myelodysplastic syndromes: clinical and biological significance. Med Oncol 2005; 22 (2): 169–175. doi: 10.1385/MO: 22: 2: 169.

12. Sloand EM, Barrett AJ. Immunosuppression for myelodysplastic syndrome: how bench to bedside to bench research led to success. Hematol Oncol Clin North Am 2010; 24 (2): 331–341. doi: 10.1016/j.hoc.2010.02.009.

13. Sloand EM, Mainwaring L, Fuhrer M et al. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 2005; 106 (3): 841–851. doi: 10.1182/blood-2004-05- 2017.

14. Saunthararajah Y, Nakamura R, Nam JM et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 2002; 100 (5): 1570–1574.

15. Wang H, Chuhjo T, Yasue S et al. Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood 2002; 100 (12): 3897–3902. doi: 10.1182/blood-2002-03-0799.

16. Melenhorst JJ, Eniafe R, Follmann D et al. Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br J Haematol 2002; 119 (1): 97–105. doi: 10.1046/j.1365-2141.2002.03802.x.

17. Fozza C, Contini S, Galleu A et al. Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4 (+) subset and oligoclonal in the CD8 (+) subset. Exp Hematol 2009; 37 (8): 947–955. doi: 10.1016/j.exphem.2009.04.009.

18. Kochenderfer JN, Kobayashi S, Wieder ED et al. Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood 2002; 100 (10): 3639–3645. doi: 10.1182/blood-2002-01-0155.

19. Serio B, Selleri C, Maciejewski JP. Impact of immunogenetic polymorphisms in bone marrow failure syndromes. Mini Rev Med Chem 2011; 11 (6): 544–552. doi: 10.2174/138955711795843356.

20. Zhang Z, Li X, Guo J et al. Interleukin-17 enhances the production of interferon- g and tumour necrosis factor-a by bone marrow T lymphocytes from patients with lower risk myelodysplastic syndromes. Eur J Haematol 2013; 90 (5): 375–384. doi: 10.1111/ejh.12074.

21. Bouchliou I, Miltiades P, Nakou E et al. Th17 and Foxp3 (+) T regulatory cell dynamics and distribution in myelodysplastic syndromes. Clin Immunol 2011; 139 (3): 350–359. doi: 10.1016/j.clim.2011.03.001.

22. Bouscary D, De Vos J, Guesnu M et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11 (6): 839–845. doi: 10.1016/j.clim.2011.03.001.

23. Callera F, Garcia AB, Falcão RP. Fas-mediated apoptosis with normal expression of bcl-2 and p53 in lymphocytes from aplastic anaemia. Br J Haematol 1998; 100 (4): 698–703. doi: 10.1046/j.1365-2141.1998.00625.x.

24. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108 (8): 2509–2519. doi: 10.1182/blood-2006-03-010777.

25. Čermák J. Myelodysplastický syndrom, MKN klasifikace a Národní onkologický registr ČR. Klin Onkol 2007; 20 (Suppl 1): 152–155.

26. Hosono N. Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol 2019; 24 (8): 885–892. doi: 10.1007/s10147-019-01462-6.

27. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): an update. Mutat Res Rev Mutat Res 2016; 769: 47–62. doi: 10.1016/j.mrrev.2016.04. 009.

28. Votavova H, Belickova M. Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: immune‑mediated bone marrow failure syndromes (review). Int J Oncol 2022; 60 (1): 7. doi: 10.3892/ijo.2021.5297.

29. Nazha A, Seastone D, Radivoyevitch T et al. Genomic patterns associated with hypoplastic compared to hyperplastic myelodysplastic syndromes. Haematologica 2015; 100 (11): e434–437. doi: 10.3324/haematol.2015.130 112.

30. Jerez A, Clemente MJ, Makishima H et al. STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients. Blood 2013; 122 (14): 2453–2459. doi: 10.1182/blood-2013-04-494930.

31. Durrani J, Maciejewski JP. Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2019; 2019 (1): 97–104. doi: 10.1182/hematology.2019000019.

32. Huang TC, Ko BS, Tang JL et al. Comparison of hypoplastic myelodysplastic syndrome (MDS) with normo-/hypercellular MDS by International Prognostic Scoring System, cytogenetic and genetic studies. Leukemia 2008; 22 (3): 544–550. doi: 10.1038/sj.leu.2405076.

33. Negoro E, Nagata Y, Clemente MJ et al. Origins of myelodysplastic syndromes after aplastic anemia. Blood 2017; 130 (17): 1953–1957. doi: 10.1182/blood-2017-02-767 731.

34. Katagiri T, Sato-Otsubo A, Kashiwase K et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood 2011; 118 (25): 6601–6609. doi: 10.1182/blood-2011-07-365189.

35. Osumi T, Miharu M, Saji H et al. Nonsense mutation in HLA-B*40: 02 in a case with acquired aplastic anaemia: a possible origin of clonal escape from autoimmune insult. Br J Haematol 2013; 162 (5): 706–707. doi: 10.1111/bjh.12395.

36. Hanaoka N, Kawaguchi T, Horikawa K et al. Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP. Blood 2006; 107 (3): 1184–1191. doi: 10.1182/blood-2005-03-1337.

37. Shen W, Clemente MJ, Hosono N et al. Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin Invest 2014; 124 (10): 4529–4538. doi: 10.1172/JCI74747.

38. Bouillon AS, Ferreira MS, Werner B et al. Comprehensive analysis of telomere biology in patients with aplastic anemia and hypoplastic myelodysplastic syndrome: further evidence for a common mechanism. Blood 2015; 126 (23): 2858. doi: 10.1182/blood.V126.23.2858. 2858.

39. Yamaguchi H, Calado RT, Ly H et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352 (14): 1413–1424. doi: 10.1056/NEJMoa042980.

40. Ueda Y, Calado RT, Norberg A et al. A mutation in the H/ACA box of telomerase RNA component gene (TERC) in a young patient with myelodysplastic syndrome. BMC Med Genet 2014; 15: 68. doi: 10.1186/1471-2350- 15-68.

41. Marsh JCW, Gutierrez-Rodrigues F, Cooper J et al. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms. Blood Adv 2018; 2 (1): 36–48. doi: 10.1182/bloodadvances.2017008110.

42. Hosokawa K, Muranski P, Feng X et al. Identification of novel microRNA signatures linked to acquired aplastic anemia. Haematologica 2015; 100 (12): 1534–1545. doi: 10.3324/haematol.2015.126128.

43. Stahl M, DeVeaux M, de Witte T et al. The use of immunosuppressive therapy in MDS: clinical outcomes and their predictors in a large international patient cohort. Blood Adv 2018; 2 (14): 1765–1772. doi: 10.1182/bloodadvances.2018019414.

44. Selleri C, Maciejewski JP, Catalano L et al. Effects of cyclosporine on hematopoietic and immune functions in patients with hypoplastic myelodysplasia: in vitro and in vivo studies. Cancer 2002; 95 (9): 1911–1922. doi: 10.1002/cncr.10915.

45. Parikh AR, Olnes MJ, Barrett AJ. Immunomodulatory treatment of myelodysplastic syndromes: antithymocyte globulin, cyclosporine, and alemtuzumab. Semin Hematol 2012; 49 (4): 304–311. doi: 10.1053/j.seminhematol.2012.07.004.

46. Jonášová A. Pokroky v terapii myelodysplastického syndromu. Klin Onkol 2021; 34 (5): 356–365. doi: 10.48095/ccko2021356.

47. Bělohlávková P. Treatment strategies for myelodysplastic syndrome in 2021. Vnitr Lek 2021; 67 (3): 150–155.

48. Zhou M, Wu L, Zhang Y et al. Outcome of allogeneic hematopoietic stem cell transplantation for hypoplastic myelodysplastic syndrome. Int J Hematol 2020; 112 (6): 825–834. doi: 10.1007/s12185-020-02969-9.

49. Bernard E, Tuechler H, Greenberg PL et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Evid 2022; 1 (7). doi: 10.1056/EVIDoa2200008.

Labels
Paediatric clinical oncology Surgery Clinical oncology

Article was published in

Clinical Oncology

Issue 3

2023 Issue 3
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#