Polygenic risk score (PRS) and its potential for breast cancer risk stratification
Authors:
M. Hovhannisyan 1; P. Kleiblová 1,2; P. Nehasil 1,3,4; J. Soukupová 1; P. Zemánková 1,3; Z. Kleibl 1,3; M. Janatová 1
Authors place of work:
Laboratoř onkogenetiky, Ústav lékařské bio chemie a laboratorní dia gnostiky, 1. LF UK a VFN v Praze
1; Ústav bio logie a lékařské genetiky, 1. LF UK a VFN v Praze
2; Ústav patologické fyziologie, 1. LF UK, Praha
3; Klinika pediatrie a dědičných metabolických poruch, 1. LF UK a VFN v Praze
4
Published in the journal:
Klin Onkol 2023; 36(3): 198-205
Category:
Review
doi:
https://doi.org/10.48095/ccko2023198
Summary
Background: Breast cancer is a complex, multifactorial disease influenced by many genetic factors. Besides the relatively rare pathogenic variants in high or moderate penetrant cancer predisposition genes, breast cancer risk is modified by numerous low risk alleles considered to be polygenic genetic factors. While the risks associated with individual polygenic loci are negligible, its cumulative effect can reach clinically significant values and it can be expressed as a polygenic risk score (PRS). PRS is recently considered to be a possible tool improving assessment of absolute and cumulative risks at the individual level. Purpose: Several single nucleotide polymorphism sets for PRS assessment have recently been developed and prepared for their implementation into clinical practice. The following text aims to explain the fundamental principles of the PRS assessment and its interpretation as a candidate prediction tool. The use of the PRS should always depend on genetic analysis of pathogenic variants in cancer predisposition genes including its current limitations.
Keywords:
breast cancer – risk stratification – polygenic risk score – PRS – breast cancer risk – sporadic breast cancer
Zdroje
1. Global Cancer Observatory. Cancer over time. [online]. Dostupné z: https: //gco.iarc.fr.
2. ÚZIS ČR. Zdravotnická ročenka České republiky 2019. [online]. Dostupné z: https: //www.uzis.cz/res/f/008 381/zdrroccz2019.pdf.
3. SVOD. Epidemiologie zhoubných nádorů v České republice. [online]. Dostupné z: http: //www.svod.cz.
4. Siu AL. Screening for breast cancer: US preventive services task force recommendation statement. Ann Intern Med 2016; 164 (4): 279–296. doi: 10.7326/M15- 2886.
5. Bulliard JL, Beau AB, Njor S et al. Breast cancer screening and overdiagnosis. Int J Cancer 2021; 149 (4): 846–853. doi: 10.1002/ijc.33602.
6. Rahman N. Realizing the promise of cancer predisposition genes. Nature 2014; 505 (7483): 302–308. doi: 10.1038/nature12981.
7. Honrado E, Benítez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 2005; 18 (10): 1305–1320. doi: 10.1038/modpathol.3800453.
8. Dorgan JF, Longcope C, Franz C et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 2002; 94 (8): 606–616. doi: 10.1093/jnci/94.8.606.
9. Hulka BS, Liu ET, Lininger RA. Steroid-hormones and risk of breast-cancer. Cancer 1994; 74 (3): 1111–1124. doi: 10.1002/1097-0142 (19940801) 74: 3+<1111:: aid-cncr2820741520>3.0.co; 2- l.
10. MacMahon B, Cole P, Lin TM et al. Age at first birth and breast cancer risk. Bull World Health Organ 1970; 43 (2): 209–221.
11. Albrektsen G, Heuch I, Hansen S et al. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. Br J Cancer 2005; 92 (1): 167–175. doi: 10.1038/sj.bjc.6602302.
12. Colditz GA, Rosner B. Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 2000; 152 (10): 950–964. doi: 10.1093/aje/152.10.950.
13. Eliassen AH, Colditz GA, Rosner B et al. Adult weight change and risk of postmenopausal breast cancer. JAMA 2006; 296 (2): 193–201. doi: 10.1001/jama.296.2.193.
14. Calle EE, Rodriguez C, Walker-Thurmond K et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348 (17): 1625–1638. doi: 10.1056/NEJMoa021423.
15. Himes DO, Root AE, Gammon A et al. Breast cancer risk assessment: calculating lifetime risk using the Tyrer--Cuzick model. J Nurse Pract 2016; 12 (9): 581–592. doi: 10.1016/j.nurpra.2016.07.027.
16. Pharoah PDP, Day NE, Duffy S et al. Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer 1997; 71 (5): 800–809. doi: 10.1002/ (sici) 1097-0215 (19970529) 71: 5<800:: aid-ijc18>3.0.co; 2-b.
17. Brewer HR, Jones ME, Schoemaker MJ et al. Family history and risk of breast cancer: an analysis accounting for family structure. Breast Cancer Res Treat 2017; 165 (1): 193–200. doi: 10.1007/s10549-017-4325-2.
18. Broca P. Traité des tumeurs. Paris: P. Asselin 1866.
19. Pohlreich P, Zikan M, Stribrna J et al. High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area. Breast Cancer Res 2005; 7 (5): R728–736. doi: 10.1186/bcr1282.
20. Miki Y, Swensen J, Shattuck-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266 (5182): 66–71. doi: 10.1126/science.7545954.
21. Wooster R, Bignell G, Lancaster J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378 (6559): 789–792. doi: 10.1038/378789a0.
22. Mateju M, Stribrna J, Zikan M et al. Population-based study of BRCA1/2 mutations: family history based criteria identify minority of mutation carriers. Neoplasma 2010; 57 (3): 280–285. doi: 10.4149/neo_2010_03_280.
23. Ponder BAJ, Day NE, Easton DF et al. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer 2000; 83 (10): 1301–1308. doi: 10.1054/bjoc.2000.1407.
24. Hu C, Hart SN, Gnanaolivu R et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med 2021; 384 (5): 440–451. doi: 10.1056/NEJMoa2005936.
25. Machackova E, Claes K, Mikova M et al. Twenty years of BRCA1 and BRCA2 molecular analysis at MMCI – current developments for the classification of variants. Klin Onkol 2019; 32 (Suppl 2): 51–71. doi: 10.14735/amko2019S51.
26. Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast 2016; 28: 136–144. doi: 10.1016/j.breast.2016.05.006.
27. Chen J, Lindblom P, Lindblom A. A study of the PTEN/MMAC1 gene in 136 breast cancer families. Hum Genet 1998; 102 (1): 124–125.
28. Børresen AL, Andersen TI, Garber J et al. Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 1992; 52 (11): 3234–3236.
29. Leggett BA, Young JP, Barker M. Peutz-Jeghers syndrome: genetic screening. Expert Rev Anticancer Ther 2003; 3 (4): 518–524. doi: 10.1586/14737140.3.4.518.
30. Dorling L, Carvalho S, Allen J et al. Breast cancer risk genes – association analysis in more than 113,000 women. N Engl J Med 2021; 384 (5): 428–439. doi: 10.1056/NEJMoa1913948.
31. Pharoah PDP, Antoniou A, Bobrow M et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat Gen 2002; 31 (1): 33–36. doi: 10.1038/ng 853.
32. Mucci LA, Hjelmborg JB, Harris JR et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016; 315 (1): 68–76. doi: 10.1001/jama.2015.17703.
33. Michailidou K, Hall P, Gonzalez-Neira A et al. Large- -scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Gen 2013; 45 (4): 353–361. doi: 10.1038/ng.2563.
34. Easton DF, Pooley KA, Dunning AM et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007; 447 (7148): 1087–1093. doi: 10.1038/nature05887.
35. Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 2012; 13 (1): 59–69. doi: 10.1038/nrg3095.
36. Michailidou K, Lindstrom S, Dennis J et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017; 551 (7678): 92–94. doi: 10.1038/nature24 284.
37. Pollack JR, Perou CM, Alizadeh AA et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23 (1): 41–46. doi: 10.1038/12640.
38. Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 2003; 362 (9394): 1439–1444. doi: 10.1016/S0140-6736 (03) 14686-7.
39. Amos CI, Dennis J, Wang Z et al. The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomarkers Prev 2017; 26 (1): 126–135. doi: 10.1158/1055-9965.EPI-16-0106.
40. Zhang H, Ahearn TU, Lecarpentier J et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 2020; 52 (6): 572–581. doi: 10.1038/s41588-020-0609-2.
41. Breast Cancer Association Consortium. [online]. Available from: https: //bcac.ccge.medschl.cam.ac.uk/bcacdata/.
42. Michailidou K, Beesley J, Lindstrom S et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015; 47 (4): 373–380. doi: 10.1038/ng. 3242.
43. Borde J, Ernst C, Wappenschmidt B et al. Performance of breast cancer polygenic risk scores in 760 female CHEK2 germline mutation carriers. J Natl Cancer Inst 2021; 113 (7): 893–899. doi: 10.1093/jnci/djaa203.
44. Mavaddat N, Pharoah PDP, Michailidou K et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 2015; 107 (5): djv036. doi: 10.1093/jnci/djv036.
45. Vachon CM, Pankratz VS, Scott CG et al. The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst 2015; 107 (5): dju397. doi: 10.1093/jnci/dju397.
46. Evans DG, Brentnall A, Byers H et al. The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case-control study. J Med Genet 2017; 54 (2): 111–113. doi: 10.1136/jmedgenet-2016-104125.
47. Kuchenbaecker KB, McGuffog L, Barrowdale D et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2017; 109 (7): djw302. doi: 10.1093/jnci/djw302.
48. Mavaddat N, Michailidou K, Dennis J et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Hum Genet 2019; 104 (1): 21–34. doi: 10.1016/j.ajhg.2018.11.002.
49. Hughes E, Tshiaba P, Gallagher S et al. Development and validation of a clinical polygenic risk score to predict breast cancer risk. JCO Precis Oncol 2020; 4: PO.19.00360. doi: 10.1200/PO.19.00360.
50. Brentnall AR, van Veen EM, Harkness EF et al. A case--control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors and mammographic density. Int J Cancer 2020; 146 (8): 2122–2129. doi: 10.1002/ijc.32541.
51. Muranen TA, Greco D, Blomqvist C et al. Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Gen Med 2017; 19 (5): 599–603. doi: 10.1038/gim.2016.147.
52. Barnes DR, Rookus MA, McGuffog L et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med 2020; 22 (10): 1653–1666. doi: 10.1038/s41436-020-0862-x.
53. Armstrong N, Ryder S, Forbes C et al. A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol 2019; 11: 543–561. doi: 10.2147/CLEP.S206949.
54. Moller P, Hagen AI, Apold J et al. Genetic epidemiology of BRCA mutations – family history detects less than 50% of the mutation carriers. Eur J Cancer 2007; 43 (11): 1713–1717. doi: 10.1016/j.ejca.2007.04. 023.
55. My Risk Hereditary Cancer Test. [online]. Available from: www.myriadmyrisk.com/riskscore/.
56. Ambry Genetics. [online]. Available from: www.ambrygen.com/clinician/ambryscore.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2023 Číslo 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Waldenström’s macroglobulinemia – clinical symptoms and review of therapy yesterday, today and tomorrow
- Polygenic risk score (PRS) and its potential for breast cancer risk stratification
- Molecular testing of endometrial carcinoma in real-world clinical practice
- Hypoplastic form of myelodysplastic neoplasm