Genetics of Atypical Parkinsonism
Authors:
L. Mikulicova 1; K. Menšíková 1; T. Bartonikova 1; L. Tučková 2; R. Vodička 3; R. Vrtěl 3; P. Kaňovský 1
Authors‘ workplace:
LF UP a FN Olomouc, Neurologická klinika
1; LF UP a FN Olomouc, Ústav klinické a molekulární patologie
2; LF UP a FN Olomouc, Ústav klinické a molekulární genetiky
3
Published in:
Cesk Slov Neurol N 2017; 80/113(1): 34-42
Category:
Review Article
Overview
Atypical parkinsonian syndromes include a diverse range of phenotypes characterized by the presence of the parkinsonian syndrome with variable accentuation of the different symptoms, motor, cognitive and behavioural, and with very variable course. Classification of these diseases is rapidly evolving, mainly owing to molecular genetics and clinical-pathological correlation.
Key words:
parkinsonian syndromes – genetics – frontotemporal dementia – multiple system atrophy – Lewy body disease – Parkinson´s disease – dementia – Perry syndrome – autosomal dominant spinocerebellar ataxia – atypical parkinsonian syndromes
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Sources
1. Farníková K, Bareš M, Nestrašil I, et al. Parkinsonian phenotypes – towards new nosology of atypical parkinsonian syndromes. Cesk Slov Neurol N 2011;74/107 (6):641– 53.
2. Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388(6645):839– 40.
3. Kosaka K, Oyanagi S, Matsushita M, et al. Presenile dementia with Alzheimer-, Pick- and Lewy-body changes. Acta Neuropathol 1976;36(3):221– 33.
4. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson‘s disease. Mov Disord 2007;22(12):1689– 707.
5. Kosaka K. Lewy body disease and dementia with Lewy bodies. Proc Jpn Acad Ser B Phys Biol Sci 2014;90(8):301– 6.
6. Emre M. Dementia associated with Parkinson‘s disease. Lancet Neurol 2003;2(4):229– 37.
7. McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47(5):1113– 24.
8. Kalinderi K, Bostantjopoulou S, Fidani L. The genetic background of Parkinson‘s disease: current progress and future prospects. Acta Neurol Scand 2016;134(5):314– 26. doi: 10.1111/ ane.12563.
9. Menšíková K, Kaňovský P, Kaiserová M, et al. The changing face of parkinsonian neurodegeneration, Cesk Slov Neurol N 2013;76/ 109(1):26– 34.
10. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson‘s disease. Science 1997;276(5321):2045– 7.
11. Spillantini MG, Goedert M. Synucleinopathies: past, present and future. Neuropathol Appl Neurobiol 2016;42(1):3– 5. doi: 10.1111/ nan.12311.
12. Proukakis C, Dudzik CG, Brier T, et al. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013;80(11):1062– 4. doi: 10.1212/ WNL.0b0 13e31828727ba.
13. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson‘s disease. Mov Disord 2013;28(6):811– 3. doi: 10.1002/ mds.25421.
14. Kiely AP, Asi YT, Kara E, et al. α-synucleinopathy associated with G51D SNCA mutation: a link between Parkinson‘s disease and multiple system atrophy? Acta Neuropathol 2013;125(5):753– 69. doi: 10.1007/ s00401-013-1096-7.
15. Lesage S, Anheim M, Letournel F, et al. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 2013;73(4):459– 71. doi: 10.1002/ ana.23894.
16. Cappelletti G, Casagrande F, Calogero A, et al. Linking microtubules to Parkinson’s disease: the case of parkin. Biochem Soc Trans 2015;43:292– 6. doi: 10.1042/ BST20150007.
17. Gasser T, Müller-Myhsok B, Wszolek ZK, et al. A susceptibility locus for Parkinson‘s disease maps to chromosome 2p13. Nat Genet 1998;18(3):262– 5.
18. West AB, Zimprich A, Lockhart PJ, et al. Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. Eur J Hum Genet 2001;9(9):659– 66.
19. Contu VR, Kotake Y, Toyama T, et al. Endogenous neurotoxic dopamine derivative covalently binds to Parkinson’s disease-associated ubiquitin C-terminal hydrolase L1 and alters its structure and function. J Neurochem 2014;130:826– 38. doi: 10.1111/ jnc.12762.
20. Pickrell A, Youle RJ. The roles of PINK1, parkin and mitochondrial fidelity in Parkinson’s disease. Neuron 2015;85(2):257– 73. doi: 10.1016/ j.neuron.2014.12.007.
21. van Duijn CM, Dekker MC, Bonifati V, et al. Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001;69(3):629– 34.
22. Bonifati V. LRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson’s disease. Neurochem Res 2007;32(10):1700– 8.
23. Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2--associated, Parkinson’s disease: a case-control study. Lancet Neurol 2008;7(7):583– 90. doi: 10.1016/ S1474-4422(08)70117-0.
24. Williams DR, Hadeed A, al-Din AS, et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 2005;20(10):1264– 71.
25. Behrens MI, Bruggemann N, Chana P, et al. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord 2010; 25(12):1929– 37. doi: 10.1002/ mds.22996.
26. Beecham GW, Dickson DW, Scott WK, et al. PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 2015;84(10):972– 80. doi: 10.1212/ WNL.0000000000001332.
27. Lautier C, Goldwurm S, Dürr A, et al. Mutations in theGIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet 2008;82(4):822– 33. doi: 10.1016/ j.ajhg.2008.01.015.
28. Li L, Funayama M, Tomiyama H, et al. No evidence for pathogenic role of GIGYF2 mutation in Parkinson disease in Japanese patients. Neurosci Lett 2010;479(3):245– 8.
29. Morrison BE, Marcondes MC, Nomura DK, et al. Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. J Immunol 2012;189(12):5498– 502. doi: 10.4049/ jimmunol.1102150.
30. Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encodingOmi/ HtrA2 in Parkinson‘s disease. Hum Mol Genet 2005;14(15):2099– 111.
31. Schneider SA, Bhatia KP, Hardy J. Complicated recessive dystonia parkinsonism syndromes. Mov Disord 2009;24(4):490– 9. doi: 10.1002/ mds.22314.
32. Shojaee S, Sina F, Banihosseini SS, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008;82(6):1375– 84. doi: 10.1016/ j.ajhg.2008.05.005.
33. Tucci A, Nalls MA, Houlden H, et al. Genetic variability at the PARK16 locus. Eur J Hum Genet 2010;18(12):1356– 9. doi: 10.1038/ ejhg.2010.125.
34. Zimprich A, Benet-Pages A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes lateonset Parkinson disease. Am J Hum Genet 2011;89(1):168– 75. doi: 10.1016/ j.ajhg.2011.06.008.
35. Deng H, Wu Y, Jankovic J. The EIF4G1 gene and Parkinson’s disease. Acta Neurol Scand 2015;132(2):73– 8. doi: 10.1111/ ane.12397.
36. Koroglu C, Baysal L, Cetinkaya M, et al. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 2013;19:320– 4. doi: 10.1016/ j.parkreldis.2012.11.006.
37. Olgiati S, De Rosa A, Quadri M, et al. PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family. Neurogenetics 2014;15(3):183– 8. doi: 10.1007/ s10048-014-0406-0.
38. Fogel BL, Clark MC, Geschwind DH. The neurogenetics of atypical parkinsonism. Semin Neurol 2014;34(2):217– 24. doi: 10.1055/ s-0034-1381738.
39. Richardson JC, Steele J, Olszewski J. Supranuclear ophthalmoplegia, pseudobulbar palsy, nuchal dystonia and dementia. A clinical report on eight cases of “heterogenous system degeneration”. Trans Am Neurol Assoc 1963;88:25– 9.
40. Williams DR, Lees AJ. What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy-parkinsonism (PSP-P)? Mov Disord 2010;25(3):357– 62. doi: 10.1002/ mds.22977.
41. Williams DR, Holton JL, Strand K, et al. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord 2007;22(15):2235– 41.
42. Ling H, de Silva R, Massey LA, et al. Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol Appl Neurobiol 2014;40(2):149– 63. doi: 10.1111/ nan.12037.
43. Josephs KA, Duffy JR, Strand EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(6):1385– 98.
44. Hassan A, Parisi JE, Josephs KA. Autopsy-proven progressive supranuclear palsy presenting as behavioral variant frontotemporal dementia. Neurocase 2012;18(6):478– 88. doi: 10.1080/ 13554794.2011.627345.
45. Kanazawa M, Tada M, Onodera O, et al. Early clinical features of patients with progressive supranuclear palsy with predominant cerebellar ataxia. Parkinsonism Relat Disord 2013;19(12):1149– 51. doi: 10.1016/ j.parkreldis.2013.07.019.
46. Nagao S, Yokota O, Nanba R, et al. Progressive supranuclear palsy presenting as primary lateral sclerosis but lacking parkinsonism, gaze palsy, aphasia, or dementia. J Neurol Sci 2012;323(1– 2):147– 53. doi: 10.1016/ j.jns.2012.09.005.
47. Höglinger GU, Melhem NM, Dickson DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011; 43:699–705.
48. Ferrari R, Ryten M, Simone R, et al. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol Aging 2014;35(6):1514e1– 12. doi: 10.1016/ j.neurobiolaging.2014.01.010.
49. Litvan I, Chism A, Litvan J, et al. H1/ H1 genotype influences symptom severity in corticobasal syndrome. Mov Disord 2010;25:760– 3. doi: 10.1002/ mds.22804.
50. Kouri N, Carlomagno Y, Baker M, et al. Novel mutation in MAPT exon 13 (p.N410H) cause corticobasal degeneration. Acta Neuropathol 2014;127(2):271– 82.
51. Josephs KA, Petersen RC, Knopman DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66(1):41– 8.
52. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245– 56. doi: 10.1016/ j.neuron.2011.09.011.
53. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257– 68. doi: 10.1016/ j.neuron.2011.09.010.
54. Bigio EH. C9ORF72, the new gene on the block, causes C9FTD/ ALS: new insights provided by neuropathology. Acta Neuropathol 2011;122(6):653– 5. doi: 10.1007/ s00401-011-0919-7.
55. van Gaalen J, Giunti P, van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord 2011;26(5):792– 800. doi: 10.1002/ mds.23584.
56. Freund HJ, Barnikol UB, Nolte D, et al. Subthalamic-thalamic DBS in a case with spinocerebellar ataxia type 2 and severe tremor-A unusual clinical benefit. Mov Disord 2007;22(5):732– 5.
57. Bettencourt C, Santos C, Coutinho P, et al. Parkinsonian phenotype in Machado-Joseph disease (MJD/ SCA3): a two-case report. BMC Neurol 2011;11:131. doi: 10.1186/ 1471-2377-11-131.
58. Musova Z, Kaiserova M, Kriegova E, et al. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia. Cerebellum 2014;13(3):331– 7. doi: 10.1007/ s12311-013-0538-z.
59. Kohira I, Ujike H, Katsu T, et al. A case of spinocerebellar ataxia type 6 with hypochondriasis and severe parkinsonism. No To Shinkei 2001;53(12):1119– 22.
60. Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ ataxia syndrome. Intractable Rare Dis Res 2014;3(4):101– 9. doi: 10.5582/ irdr.2014.01029.
61. Steele JC, Guella I, Szu-Tu C, et al. Defining neurodegeneration on Guam by targeted genomic sequencing. Ann Neurol 2015;77(3):458– 68. doi: 10.1002/ ana.24346.
62. Camuzat A, Romana M, Dürr A, et al. The PSP-associated MAPT H1 subhaplotype in Guadeloupean atypical parkinsonism. Mov Disord 2008;23(16):2384– 91. doi: 10.1002/ mds.22297.
63. Aji BM, Medley G, O‘Driscoll K, et al. Perry syndrome: a disorder to consider in the differential diagnosis of Parkinsonism. J Neurol Sci 2013;330(1– 2):117– 8. doi: 10.1016/ j.jns.2013.04.008.
64. Brait K, Fahn S, Schwarz GA. Sporadic and familial parkinsonism and motor neuron disease. Neurology 1973;23(9):990– 1002.
65. Manno C, Lipari A, Bono V, et al. Sporadic Parkinson disease and amyotrophic lateral sclerosis complex (Brait-Fahn-Schwarz disease). J Neurol Sci 2013;326(1– 2):104– 6. doi: 10.1016/ j.jns.2013.01.009.
66. Belin J, Gordon POH, Guennoc AM, et al. Brait-Fahn-Schwarz disease: the missing link between ALS and Parkinson’s disease. Amyotroph Lateral Scler Frontotemporal Degener 2015;16(1– 2):135– 6. doi: 10.3109/ 21678421.2014.948880.
67. Kovacs GG, Botond G, Budka H. Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010;119(4):389– 408. doi: 10.1007/ s00401-010-0658-1.
68. Husárová I, Bareš M. Spinocerebelární ataxie. In: Menšíková K, Bareš M, Kaňovský P, eds. Atypické parkinsonské syndromy. Praha: Galén 2015:227– 38.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2017 Issue 1
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
Most read in this issue
- Essential Neurological Examination – Time for Change?
- Current Perception of Contraindications and Complications of Nerve Conduction Studies and Needle Electromyography
- Extirpation of Colloid Cyst by an Endoscopic Approach
- Periodic Limb Movements During Sleep are More Severe in Narcolepsy with Cataplexy than in Narcolepsy without Cataplexy