Significant fall risk factors in the personal history of in-patients with neurological disease
Authors:
M. Miertová 1; I. Bóriková 1; M. Grendár 2; J. Madleňák 1; M. Tomagová 1; K. Žiaková 1
Authors place of work:
Ústav ošetrovateľstva, Jesseniova LF UK v Martine, Slovensko
1; Martinské centrum pre biomedicínu (BioMed), Jesseniova LF UK v Martine, Slovensko
2
Published in the journal:
Cesk Slov Neurol N 2019; 82(6): 649-654
Category:
Original Paper
doi:
https://doi.org/10.14735/amcsnn2019649
Summary
Aim: To identify significant fall risk factors in in-patients with neurological disease and to assess their predictive value.
Patients and methods: 298 in-patients were included into the prospective study. Fall risk factors were assessed through analysis of medical records, and fall risk score was identified through the Morse Fall Scale (MFS) screening during admission to the hospital. A multidimensional logistic regression model was used to identify significant fall risk factors. The relative risk of falling was quantified using the odds ratio (OR). Receiver operating characteristic (ROC) curve with area under the curve (AUC) was used to assess the predictive value of selected fall risk factors.
Results: The most frequent fall risk factors were in the sample (N = 298): gait, balance and mobility disorders (80.9%), pharmacotherapy (57.0%), associated disease (52.7%), and visual impairment (52.3%). The average fall risk score was at medium risk level (MFS score of 44.2 ± 21.2). The highest risk of falling was seen in risk factors: associated disease (OR = 5.452; CI 1.693– 20.033; P = 0.007), medical diagnosis G35– G37 (OR = 4.597, CI 1.273– 17.481; P = 0.021), visual impairment (OR = 3.494; CI 1.281– 10.440; P = 0.019), and fall risk level according to the MFS at admission (OR = 1.18; CI 1.135– 1.252; P < 0.001). The predictive value of risk factors expressed by the ROC curve was AUC = 0.934.
Conclusions: Identifying fall risk factors is the first step in effective prevention of this adverse event during hospitalization. Targeted fall risk screening will allow planning and implementation of interventions to minimize the risk of falling.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
患有神经系统疾病的患者的个人病史中存在重要的跌倒危险因素
目的:确定患有神经系统疾病的住院患者的重大跌倒危险因素,并评估其预测价值。
患者和方法:298名住院患者纳入前瞻性研究。通过对病历的分析来评估跌倒风险因素,并在入院期间通过莫尔斯跌倒量表(MFS)筛查来确定跌倒风险评分。多维逻辑回归模型用于确定重大的跌倒风险因素。使用比值比(OR)量化跌倒的相对风险。受试者工作特征(ROC)曲线及其下的面积(AUC)用于评估所选跌倒危险因素的预测值。
结果:最常见的跌倒风险因素是样本(N = 298):步态,平衡和活动障碍(80.9%),药物治疗(57.0%),相关疾病(52.7%)和视力障碍(52.3%)。平均跌倒风险评分处于中等风险水平(MFS评分为44.2±21.2)。跌倒的最高风险发生于危险因素:相关疾病(OR = 5.452; CI 1.693-20.033; P = 0.007),医学诊断G35-G37(OR = 4.597,CI 1.273-17.481; P = 0.021),视力障碍(OR = 3.494; CI 1.281– 10.440; P = 0.019),并根据入院时的MFS下降风险水平(OR = 1.18; CI 1.135– 1.252; P <0.001)。 ROC曲线表示的危险因素的预测值为AUC = 0.934。
结论:识别跌倒危险因素是有效预防住院期间这种不良事件的第一步。有针对性的跌倒风险筛查将有助于规划和实施干预措施,以最大程度地降低跌倒的风险。
关键词:跌倒–危险因素–筛查–神经科–患者–住院
Keywords:
fall – risk factor – patient – screening – Neurology – hospitalization
Zdroje
1. Kobayashi K, Imagama S, Inagaki Y et al. Incidence and characteristics of accidental falls in hospitalizations. Nagoya J Med Sci 2017; 79(3): 291– 298. doi: 10.18999/ nagjms.79.3.291.
2. Krobot A, Kolářová B, Kolář P et al. Neurorehabilitace chůze po cévní mozkové příhodě. Cesk Slov Neurol N 2017; 80/ 113(5): 521– 526. doi: 10.14735/ amcsnn2017521.
3. Kenny RA, Rommero-Ortuno R, Kumar P. Falls in older adults. Medicine 2017; 45(1): 28– 33. doi: 10.1016/ j.mpmed.2016.10.007.
4. Yoo SH, Kim SR, Shin YS. A prediction model of falls for patients with neurological disorder in acute care hospital. J Neurol Sci 2015; 356(1– 2): 113– 117. doi: 10.1016/ j.jns.2015.06.027.
5. Sung YH, Cho MS, Kwon IG et al. Evaluation of fallsby inpatients in acute care hospital in Korea using the Morse Fall Scale. Int J Nurs Pract 2014; 20(5): 510– 517. doi: 10.1111/ ijn.12192.
6. Bouldin ER, Andresen EM, Dunton NE et al. Falls among adult patients hospitalized in the United States: prevalence and trends. J Patient Saf 2013; 9(1): 13– 17. doi: 10.1097/ PTS.0b013e3182699b64.
7. Hunderfund AN, Sweeney CM, Mandrekar JN et al. Effect of multidisciplinary fall risk assessment on falls among neurology inpatients. Mayo Clin Proc 2011; 86(1): 19– 24. doi: 10.4065/ mcp.2010.0441.
8. Zhao YL, Kim H. Older adult inpatient falls in acute care hospitals: intrinsic, extrinsic, and environmental factors. J Gerontol Nurs 2015; 41(7): 29– 43. doi: 10.3928/ 00989134-20150616-05.
9. Camicioli R. Falls in aging and neurological disease. In: Albert ML, Knoefel JE (eds). Clinical neurology of aging. 3rd ed. New York: Oxford University Press 2011: 297– 313.
10. Tan KM, Tan MP. Stroke and falls – clash of the two titans in geriatrics. Geriatrics (Basel) 2016; 1(31): 1– 15. doi: 10.3390/ geriatrics1040031.
11. Rudzińska M, Bukowczan S, Stožek J et al. The incidence and risk factors of falls in Parkinson’s disease: prospective study. Neurol Neurochir Pol 2013; 47(5): 431– 437. doi: 10.5114/ ninp.2013.38223.
12. Valkovič P, Košutzká Z, Schmidt F. Posturálna instabilita, poruchy chôdze a pády pri Parkinsonovej chorobe. Cesk Slov Neurol N 2012; 75/ 108(2): 141– 153.
13. Allen NE, Sschwarzel AK, Canning CG. Recurrent fallsin Parkinson’s disease: a systematic review. Parkinsons Dis 2013; 2013: 906274. doi: 10.1155/ 2013/ 906274.
14. Mazunder R, Murchison CH, Bourdette D et al. Fallsin people with multiple sclerosis compared with fallsin healthy controls. PLoS One 2014; 9(9): e107620. doi: 10.1371/ journal.pone.0107620.
15. Prevence pádů ve zdravotnickém zařízení. Cesta k dokonalosti a zvyšování kvality. Praha: GRADA Publishing 2007: 172.
16. Remor CP, Cruz CB, Urbanetti JS. Analysis of fall risk factors in adults within the first 48 hours of hospitalization. Rev Gaucha Enferm 2014; 35(4): 28– 34. doi: 10.1590/ 1983-1447.2014.04.50716.
17. Renfro M, Maring J, Bainbridge D et al. Fall risk among older adult high-risk populations: a review of current screening and assessment tools. Curr Geri Rep 2016; 5(3): 160– 171.
18. Han J, Xu L, Zhou CH et al. Stratify, Hendrich II fall risk model and Morse Fall Scale used in predicting the risk of falling for elderly in-patients. Biomed Res 2017; 28 (special issue): S439– S442.
19. Nassar N, Helou N, Madi CH. Predicting fallsusing two instruments (The Hendrich Fall Risk Scale and The Morse Fall Scale) in an Acute Care Setting in Lebanon. J Clin Nurs 2014; 23(11– 12): 1620– 1629. doi: 10.1111/ jocn.12278.
20. Sardo PM, Simões CS, Alvarelhão JJ et al. Fall risk assess-ment: retrospective analysis of Morse Fall Scale scores in Portuguese hospitalized adult patients. Appl Nurs Res 2016; 31: 34– 40. doi: 10.1016/ j.apnr.2015.11.013.
21. Gu YY, Balcaen K, Ni Y et al. Review on prevention of falls in hospital settings. Chin Nurs Res 2016; 3(1): 7– 10. doi: 10.1016/ j.cnre.2015.11.002.
22. Bradley SM, Karani R, McGinn T et al. Predictors of serious injury among hospitalized patients evaluated for falls. J Hosp Med 2010; 5(2): 63– 68. doi: 10.1002/ jhm.555.
23. Morse J. Preventing patient falls. Establishing a Fall Intervention Program. 2nd ed. New York: Springer Publishing Company, LLC 2009.
24. Miake-Lye IM, Hempel S, Ganz DA et al. Inpatient fall prevention programs as a patient safety strategy. A systematic review. Ann Intern Med 2013; 158 (5 Pt 2): 390– 396. doi: 10.7326/ 0003-4819-158-5-201303051-00005.
25. Cumbler EU, Simpson JR, Rosenthal LD et al. Inpatient falls: defining the problem and identifying possible solution. Part I: an evidence-based review. Neurohospitalist 2013; 3(3): 135– 143. doi: 10.1177/ 1941874412470665.
26. Kim KS, Kim JA, Choi YK et al. A comparative study of the validity of fall risk assessment scales in Korean hospitals. Asian Nurs Res (Korean Soc Nurs Sci) 2011; 5(1): 28– 37. doi: 10.1016/ S1976-1317(11)60011-X.
27. Morse JM, Morse RM, Tylko SJ. Development of a scale to identify the fall-prone patient. Canadian J Aging 1989; 8(4): 366– 377. doi: 10.1017/ S0714980800008576.
28. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: Austria 2018. [online]. Available from URL: https:/ / www.R-project.org/ .
29. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer 2002.
30. Falls in older people: assessing risk and prevention. NICE Clinical Guideline 161 (reviewed). Developed by the Centre for Clinical Practice at NICE, 2018. 31 p. [online]. Available from URL: https:/ / www.nice.org.uk/ guidance/ cg161/ chapter/ about-this-guideline.
31. Gunn H, Creanor S, Haas B et al. Risk factors for fall in multiple sclerosis: an observational study. Mult Scler 2013; 19(14): 1913– 1922. doi: 10.1177/ 1352458513488233.
32. Bednařík J, Ambler Z, Růžička E et al. Klinická neurologie – část speciální I. Praha: TRITON 2010: 707.
33. Lunsford B, Wilson LD. Assessing your patients risk for falling. American Nurse Today 2015; 10(7): 29– 31.
34. Nonnekes J, Goselink RJ, Růžička E et al. Neurological disorders of gait, balance and posture: a sign-based approach. Nat Rev Neurol 2018; 14(3): 183– 189. doi: 10.1038/ nrneurol.2017.178.
35. Mion LC, Chandler AM, Waters TM et al. Is it possible to identify risks for injurious falls in hospital patients? Jt Comm J Qual Patient Saf 2012; 38(9): 408– 413.
36. Gray-Miceli D, Quigley PA. Falls prevention: assessment, diagnoses, and intervention strategies. In: Boltz M et al (eds). Evidence-based geriatric Nursing Protocols for Best Practice. 4th ed. New York: SpringerPublishing Company 2012: 268– 297.
37. Marshall FJ. Approach to the elderly patient with gait disturbance. Neurol Clin Pract 2012; 2(2): 103– 111. doi: 10.1212/ CPJ.0b013e31825a7823.
38. Fehlberg EA, Lucero RJ, Weaver MT et al. Associations between hypernatremia, volume depletion and the risk of falls in US hospitalised patients: a case-control study. BMJ Open 2017; 7(8): e017045. doi: 10.1136/ bmjopen-2017-017045.
39. Guillaume D, Crawford S, Quigley P. Characteristics of the middle-age adult inpatient fall. Appl Nurs Res 2016; 31: 65– 71. doi: 10.1016/ j.apnr.2016.01.003.
40. Krasulová E, Blahová Dušánková J, Havrdová E. Roz-troušená skleróza – psychoneuroimunologické onemocnění centrálního nervového systému. Psychiatr Prax 2009; 10(3): 121– 125.
41. Kurčová S, Menšíková K, Kaiserová M et al. Pre-motorické a non-motorické príznaky Parkinsonovej choroby – taxonómia, klinická manifestácia a neuropatologické koreláty. Cesk Slov Neurol N 2016; 79/ 122(3): 255– 270. doi: 10.14735/ amcsnn2016255.
42. Custodio N, Lira D, Herrera-Perez E et al. Predictive model for falling in Parkinson disease patients. eNeurological Sci 2016; 5: 20– 24. doi: 10.1016/ j.ensci.2016.11.003.
43. Dušek L, Pavlík T, Jarkovský J et al. Analýza dát v neurologii – XXVIII. Hodnocení diagnostických testů – křivky ROC. Cesk Slov Neurol N 2011; 74/ 107(4): 493– 499.
44. Pokorná A, Búřilová P, Šrombachová V et al. Centrální systém hlášení nežádoucích událostí – Metodika nežádoucí událost PÁD. Plná verze metodiky 1/ 2017. Praha: Ústav zdravotnických informací a statistiky ČR 2017: 40.
45. Bittencourt VL, Graube SL, Stumm EM et al. Factors associated with the risk of falls in hospitalized adult patients. Rev Esc Enferm USP 2017; 51: e03237. doi: 10.1590/ S1980-220X2016037403237.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2019 Číslo 6
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Cervical plexus lesions in clinical practice
- Doporučení pro mechanickou trombektomii akutního mozkového infarktu – verze 2019
- Mechanical thrombectomy in the treatment of acute ischemic stroke in childhood
- Gunshot injury of the brain