Neuromyelitis optica spectrum disorders – laboratory examination
Authors:
P. Nytrová 1; V. Král 2
Authors place of work:
Neurologická klinika a Centrum klinických neurověd, 1. LF UK a VFN v Praze
1; Centrum imunologie a mikrobiologie, Zdravotní ústav se sídlem v Ústí nad Labem
2
Published in the journal:
Cesk Slov Neurol N 2020; 83/116(supplementum 1): 31-36
doi:
https://doi.org/10.14735/amcsnn2020S31
Summary
The assessment of neuronal antibodies improves diagnostic accuracy in a group of autoimmune disorders of the CNS. One of these examples is the detection of autoantibodies to aquaporin-4 (AQP4-IgG) in patients with neuromyelitis optica (NMO). The discovery of these antibodies has improved understanding of the pathogenesis and therapeutic approach in this syndrome. Furthermore, these antibodies facilitated the differentiation between NMO and MS. The sensitivity and specificity of these antibodies increased thanks to the assessment using cell-based assays in which antigen is expressed as a native protein in a membrane of the transfected cell. This was confirmed by testing of other antibodies targeting myelin oligodendrocyte glycoprotein, which are associated with acute disseminated encephalomyelitis or AQP4-IgGnegNMO. These autoantibodies are rarely detected in patients with MS.
Keywords:
MOG encephalomyelitis – neuromyelitis optica – antibodies to aquaporin-4 – antibodies to myelin oligodendrocyte glycoprotein – cell-based assays
Zdroje
1. Bauer J, Bien CG. Neuropathology of autoimmune encephalitides. Handb Clin Neurol 2016; 133: 107–120. doi: 10.1016/B978-0-444-63432-0.00007-4.
2. Molina RD, Conzatti LP, da Silva AP et al. Detection of autoantibodies in central nervous system inflammatory disorders: clinical application of cell-based assays. Mult Scler Relat Disord 2020; 38: 101858. doi: 10.1016/j.msard.2019.101858.
3. Waters PJ, Pittock SJ, Bennett JL et al. Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimmunol 2014; 5 (3): 290–303. doi: 10.1111/cen3.12107.
4. Waters P, Pettingill P, Lang B. Detection methods for neural autoantibodies. Handb Clin Neurol 2016; 133: 147–163. doi: 10.1016/B978-0-444-63432-0.00009-8.
5. Wingerchuk D, Banwell B, Bennett JL et al. International consensu diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (2): 177–189. doi: 10.1212/WNL.0000000000001729.
6. Jarius S, Paul F, Aktas O et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 2018; 15 (1): 134. doi: 10.1186/s12974-018-1144-2.
7. Lennon VA, Wingerchuk DM, Kryzer TJ et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004; 364 (9451): 2106–2112. doi: 10.1016/S0140-6736 (04) 17551-X.
8. Waters PJ, McKeon A, Leite MI et al. Serologic diag-nosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 2012; 78 (9): 665–669. doi: 10.1212/WNL.0b013e318248dec1.
9. Lennon VA, Kryzer TJ, Pittock SJ et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005; 202 (4): 473–477. doi: 10.1084/jem.20050304.
10. Jung JS, Bhat RV, Preston GM et al. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 1994; 91 (26): 13052–13056. doi: 10.1073/pnas.91.26.13052.
11. Marnetto F, Hellias B, Granieri L et al. Western blot analysis for the detection of serum antibodies recognizing linear aquaporin-4 epitopes in patients with neuromyelitis optica. J Neuroimmunol 2009; 217 (1–2): 74–79. doi: 10.1016/j.jneuroim.2009.10.002.
12. Waters P, Reindl M, Saiz A et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2016; 87 (9): 1005–1015. doi: 10.1136/jnnp-2015-312601.
13. Jarius S, Franciotta D, Paul F et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J Neuroinflammation 2010; 7: 52. doi: 10.1186/1742-2094-7-52.
14. Cohen M, De Sèze J, Marignier R et al. False positivity of anti aquaporin-4 antibodies in natalizumab-treated patients. Mult Scler 2016; 22 (9): 1231–1234. doi: 10.1177/1352458516630823.
15. Stüve O, Bennett JL. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev 2007; 13 (1): 79–95. doi: 10.1111/j.1527-3458.2007.00003.x.
16. Takahashi T, Fujihara K, Nakashima I et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 2007; 130 (Pt 5): 1235–1243. doi: 10.1093/brain/awm062.
17. Nytrová P, Kleinová P, Preiningerová Lízrová J et al. Neuromyelitis optica a poruchy jejího širšího spektra – retrospektivní analýza klinických a paraklinických nálezů. Cesk Slov Neurol N 2015; 78/111 (1): 72–77. doi: 10.14735/amcsnn201572.
18. Valentino P, Marnetto F, Granieri L et al. Aquaporin-4 antibody titration in NMO patients treated with rituximab: a retrospective study. Neurol Neuroimmunol Neuroinflamm 2016; 4 (2): e317. doi: 10.1212/NXI.000 0000000000317.
19. Quek AM, McKeon A, Lennon VA et al. Effects of age and sex on aquaporin-4 autoimmunity. Arch Neurol 2012; 69 (8): 1039–1043. doi: 10.1001/archneurol.2012.249.
20. Johns TG, Bernard CC. The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem 1999; 72 (1): 1–9. doi: 10.1046/j.1471-4159.1999.0720001.x.
21. Reindl M, Linington C, Brehm U et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 1999; 122 (Pt 11): 2047–2056. doi: 10.1093/brain/122.11.2047.
22. Berger T, Rubner P, Schautzer F et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 2003; 349 (2): 139–145. doi: 10.1056/NEJMoa022328.
23. Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies Nat Rev Neurol 2019; 15 (2): 89–102. in neurological disease. doi: 10.1038/s41582-018-0112-x.
24. Hacohen Y, Absoud M, Deiva K et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol Neuroimmunol Neuroinflamm 2015; 2: e81. doi: 10.1212/NX I.0000000000000081.
25. Mariotto S, Gajofatto A, Batzu L et al. Relevance of antibodies to myelin oligodendrocyte glycoprotein in CSF of seronegative cases. Neurology 2019; 93 (20): e1867–e1872. doi: 10.1212/WNL.0000000000008479.
26. Waters PJ, Komorowski L, Woodhall M et al. A multicenter comparison of MOG-IgG cell-based assays. Neurology 2019; 92 (11): e1250–e1255. doi: 10.1212/WNL.0000 000000007096.
27. Mader S, Gredler V, Schanda K et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 2011; 8: 184. doi: 10.1186/1742-2094-8-184.
28. Pittock SJ, Lennon VA, de Seze J et al. Neuromyelitis optica and non organ-specific autoimmunity. Arch Neurol 2008; 65 (1): 78–83. doi: 10.1001/archneurol.2007.17.
29. Jarius S, Paul F, Franciotta D et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 2011; 306 (1–2): 82–90. doi: 10.1016/j.jns.2011.03.038.
30. Wingerchuk DM, Hogancamp WF, O‘Brien PC et al. The clinical course of neuromyelitis optica (Devic‘s syndrome). Neurology 1999; 53 (5): 1107–1114. doi: 10.1212/ wnl.53.5.1107.
31. Uzawa A, Mori M, Arai K et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 2010; 16 (12): 1443–1452. doi: 10.1177/1352458510379247.
32.Uzawa A, Mori M, Ito M et al. Markedly increased CSF interleukin-6 levels in neuromyelitis optica, but not in multiple sclerosis. J Neurol 2009; 256 (12): 2082–2084. doi: 10.1007/s00415-009-5274-4.
33. Yamamura T, Kleiter I, Fujihara K et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019; 381 (22): 2114–2124. doi: 10.1056/NEJMoa1901747.
34. Disanto G, Barro C, Benkert P et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol 2017; 81 (6): 857–870. doi: 10.1002/ana.24954.
35. Watanabe M, Nakamura Y, Michalak Z et al. Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 2019; 93 (13): e1299–e1311. doi: 10.1212/WNL.0000000000008160.
36. Nytrova P, Potlukova E, Kemlink D et al. Complement activation in patients with neuromyelitis optica. J Neuroimmunol 2014; 274 (1–2): 185–191. doi: 10.1016/j.jneuroim.2014.07.001.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2020 Číslo supplementum 1
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Magnetic resonance imaging in neuromyelitis optica spectrum disorders
- Neuromyelitis optica spectrum disorders – laboratory examination
- Epidemiology, clinical manifestation, and disease course of neuromyelitis optica spectrum disorders
- Differential diagnosis of neuromyelitis optica spectrum disorders