Progress in knowledge of migraine pathophysiology
Authors:
R. Kotas; J. Mračková; P. Potužník
Authors place of work:
Centrum pro diagnostiku a léčbu bolestí hlavy, Neurologická klinika LF UK a FN Plzeň
Published in the journal:
Cesk Slov Neurol N 2022; 85(6): 451-456
Category:
Review Article
doi:
https://doi.org/10.48095/cccsnn2022451
Summary
The article summarizes the current understanding of the pathophysiology of migraine. Some controversial aspects of the underlying mechanisms of the disorder are mentioned. In general, five phases of migraine are recognized: prodromal, aura, headache, postdromal, and interictal. These phases may overlap or may not occur from attack to attack or from person to person. In the article, pathophysiologic mechanisms of individual phases are discussed. Character of clinical symptoms and recent functional neuroimaging studies focusing on the prodromal phase of migraine support the role of the hypothalamus in this phase. Altered sensory processing during the interictal and prodromal phase may contribute to the development of a migraine attack. Indirect evidence supports the generally accepted hypothesis that the pathophysiological mechanism of aura is cortical spreading depolarization. Headache is mediated by the activation of the trigeminovascular system (pathway). The release of calcitonin gene-related peptide plays the key role here. Brain regions and mechanisms responsible for the prodromal phase could also play a role in the postdromal phase. Migraine can be seen as a complex cyclical brain disorder that likely results from dysfunction of more brain areas and their connections.
Keywords:
Hypothalamus – Migraine – pathophysiology – functional neuroimaging studies – cortical spreading depolarization – trigeminovascular system – calcitonin gene-related peptide
Zdroje
1. World Health Organization Statistics 2013 (A Wealth Of Information Of Global Public Health). Switzerland, Geneva: WHO Document Production Services: 1–168.
2. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18 (5): 459–480. doi: 10.1016/S1474-4422 (18) 30499-X.
3. Lipton RB, Bigal ME, Diamond M et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 2007; 68 (5): 343–349. doi: 10.1212/01.wnl.0000252808.97649.21.
4. Stewart WF, Ricci JA, Chee E et al. Lost productive time and cost due to common pain conditions in the US workforce. JAMA 2003; 290 (18): 2443–2454. doi: 10.1001/jama.290.18.2443.
5. Andlin-Sobocki P, Jonsson B, Wittchen HU et al. Cost of disorders of brain in Europe. Eur J Neurol 2005; 12 (Suppl 1): 1–27. doi: 10.1111/j.1468-1331.2005.01202.x.
6. De Tomaso M, Ambrosini A, Brighina F et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 2014; 10 (3): 144–155. doi: 10.1038/nrneurol.2014.14.
7. Goadsby PJ, Holland PR. An update: pathophysiology of migraine. Neurol Clin 2019; 37 (4): 651–671. doi: 10.1016/j.ncl.2019.07.008.
8. Hansen JM, Goadsby PJ, Charles AC. Variability of clinical features in attacks of migraine with aura. Cephalalgia 2016; 36 (3): 216–224. doi: 10.1177/0333102415613612.
9. Peng KP, May A. Redefining migraine phases – a suggestion based on clinical, physiological, and functional imaging evidence. Cephalalgia 2020; 40 (8): 866–870. doi: 10.1177/0333102419898868.
10. Recober A. Pathophysiology of migraine. Continuum (Minneap Minn) 2021; 27 (3): 586–596. doi: 10.1212/ CON.00000000000983.
11. Karsan N, Bose P, Goadsby PJ. The migraine premonitory phase. Continuum (Minneap Minn) 2018; 24 (4): 996–1008. doi: 10.1212/CON.0000000000000624.
12. Karsan N, Goadsby PJ. Biological insights from premonitory symptoms of migraine. Nat Rev Neurol 2018; 14 (12): 699–710. doi: 10.1038/s41582-018-0098-4.
13. Waelkens J. Dopamine blockage with domperidone: bridge between prophylactic and abortive treatment of migraine? A dose-finding study. Cephalalgia 1984; 4 (2): 85–90. doi: 10.1046/j.1468-2982.1984.0402085.x.
14. Maniyar FH, Sprenger T, Monteith T et al. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 2014; 137 (Pt 1): 232–241. doi: 10.1093/brain/awt320.
15. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (Pt 7): 1987–1993. doi: 10.1093/brain/aww097.
16. Maniyar FH, Sprenger T, Schankin C et al. Photic hypersensitivity in the premonitory phase of migraine – a positron emission tomography study. Eur J Neurol 2014; 21 (9): 1178–1183. doi: 10.1111/ene.12451.
17. Maniyar FH, Sprenger T, Schankin C et al. The origin of nausea in migraine – A PET study. J Headache Pain 2014; 15 (1): 84. doi: 10.1186/1129-2377-15-84.
18. Lai J, Dilli E. Migraine aura: updates in pathophysiology and management. Curr Neurol Neurosci Rep 2020; 20 (6): 17. doi: 10.1007/s11910-020-010373.
19. Nežádal T, Marková J, Bártková A et al. Mezinárodní klasifikace bolestí hlavy (ICHD-3) – oficiální český překlad. Cesk Slov Neurol N 2020; 83/116 (2): 145–152. doi: 10.14735/amcsnn2020145.
20. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci 2015; 35 (17): 6619–6629. doi: 10.1523/JNEUROSCI.0373-15.2015.
21. Hadjikhami N, Sanchez Del Rio M, Wu O et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 2001; 98 (8): 4687–4692. doi: 10.1073/pnas.071582498.
22. Hansen JM, Baca SM, Vanvalkenburgh P et al. Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain 2013; 136 (Pt 12): 3589–3595. doi: 10.1093/brain/awt309.
23. Reyes BAS, Valentino RJ, Xu G et al. Hypothalamic projections to locus coeruleus neurons in rat brain. Eur J Neurosci 2005; 22 (1): 93–106. doi: 10.1111/j.1460-9568.2005.04197.x.
24. Vila-Pueyo M, Strother LC, Kefel M et al. Divergent influences of the locus coeruleus on migraine pathophysiology. Pain 2019; 160 (2): 385–394. doi: 10.1097/ j.pain.0000000000001.
25. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci 2003; 4 (5): 386–398. doi: 10.1038/nrn1102.
26. Olesen J, Burstein R, Ashina M et al. Origin of pain in migraine: evidence for peripheral sensitization. Lancet Neurol 2009; 8 (7): 679–690. doi: 10.1016/S1474-4422 (09) 70090-0.
27. Moskowitz MA, Notami K, Krajg R. Neocortical spreading depression provokes the expression of c-fos- protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 1993; 13 (3): 1167–1177. doi: 10.1523/JNEUROSCI.13-03-01167.1993.
28. Yhang XCh, Levy D, Noseda R et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 2010; 30 (26): 8807–8814. doi: 10.1523/JNEUROSCI.0511-10. 2010.
29. Edvinsson L, Haanes KA, Warfvinge K et al. CGRP as the target of new migraine therapies – successful translation from bench to clinic. Nat Rev Neurol 2018; 14 (6): 338–350. doi: 10.1038/s41582-018-0003.
30. Edvinson JCA, Warfvinge K, Krause DN et al. C-fibers may modulate adjacent A delta fibers through axon – axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20 (1): 105. doi: 10.10194-019-1055-3.
31. Thalakoti S. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 2007; 47 (7): 1008–1023. doi: 10.1111/j.1526-4610.2007.00854.x.
32. Iyengar S, Johnson KW, Ossipov MH et al. CGRP and the trigeminal system in migraine. Headache 2019; 59 (5): 659–681. doi: 10.1111/head.13529.
33. Goadsby PJ, Holland PR, Martins-Oliveira M et al. Patho- physiology of migraine: a disorder of sensory processing. Physiol Rev 2017; 97 (2): 553–622. doi: 10.1152/physrev.00034.2015.
34. Kotas R. Bolesti hlavy v klinické praxi. Praha: Maxdorf 2015.
35. Nežádal T, Marková J, Bártková A et al. CGRP monoklonální protilátky v léčbě migrény – indikační kritéria a terapeutická doporučení pro Českou republiku. Cesk Slov Neurol N 2020; 83/116 (4): 445–451. doi: 10.14735/amcsnn2020445.
36. Hadjikhani N, Albrecht DS, Mainero C et al. Extra--axial inflammatory signal in parameninges in migraine with visual aura. Ann Neurol 2020; 87 (6): 939–949. doi: 10.1002/ana.25731.
37. Vollesen ALH, Amin FM, Ashina M. Targeted pituitary adenylate cyclase-activating peptide therapies for migraine. Neurotherapeutics 2018; 15 (2): 371–376. doi: 10.1007/s13311-017-0596-x.
38. Ashina H, Guo S, Vollesen ALH et al. PACAP 38 in human models of primary headaches. J Headache Pain 2017; 18 (1): 110. doi: 10.1186/s10194-017-0821-3.
39. Edvinsson L, Tajti J, Szalárdy L et al. PACAP and its role in primary headaches. J Headache Pain 2018; 19 (1): 21. doi: 10.1186/s10194-018-0852-4.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2022 Číslo 6
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Guidelines for developmental dysphasia – version 2022
- Validation study and introduction of the new TEPO sentence comprehension test for children aged 3–8 years
- Limb girdle muscular dystrophies
- New pharmacological options in the treatment of Alzheimer‘s disease