Bacteriocins produced by lactic acid bacteria
Authors:
Andrea Bilková; Hana Kiňová Sepová; František Bilka; Andrea Balážová
Authors place of work:
Univerzita Komenského v Bratislave, Farmaceutická fakulta, Katedra bunkovej a molekulárnej biológie liečiv
Published in the journal:
Čes. slov. Farm., 2011; 60, 65-72
Category:
Review Articles
Summary
Lactic acid bacteria comprise several genera of gram–positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.
Key words:
lactic acid bacteria – probiotics – bacteriocins – lantibiotics – nisin – biopreservation
Zdroje
1. Sobolov, M., Smiley, K. L.: Metabolism of glycerol by an acrolein–forming lactobacillus. J. Bacteriol. 1960; 79, 261–266.
2. Messens, W., De, V. L.: Inhibitory substances produced by lactobacilli isolated from sourdoughs – a review. Int. J. Food Microbiol. 2002; 72, 31–43.
3. Riley, M. A., Chavan, M. A.: Introduction. In: Riley, M. A., Chavan, M. A., eds. Bacteriocins: Ecology and Evolution, 1st ed. Berlin, Springer-Verlag, 2007.
4. Klaenhammer, T. R.: Bacteriocins of lactic acid bacteria. Biochim. 1988; 70, 337–349.
5. Gratia, A.: Sur un remarquable example d’antagonisme entre deux souches de colibacille. Comp. Rend. Soc. Biol. 1925; 93, 1040–1042.
6. de Jong, A., van Hijum, A. F. T., Bijlsma, J. J. E., Kok, J., Kuipers, O. P.: BAGEL: a web-based bacteriocin genome mining tool. Nucl. Acids Res. 2006; 34, W273–W279.
7. Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V., Holo, H.: Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Leeuwenhoek 1996; 70, 113–128.
8. Riley, M. A., Wertz, J. E.: Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 2002; 84, 357–364.
9. Cintas, L. M., Casaus, M. P., Havarstein, L. S., Hernandez, P. E., Nes, I. F.: Bacteriocins of lactic acid bacteria. Food Sci. Technol. Int. 2001; 7, 281–305.
10. Tobajas, M., Mohedano, A. F., Casas, J. A., Rodríguez, J. J.: A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochem. Eng. J. 2007; 35, 218–225.
11. Klaenhammer, T.: Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85.
12. Konings, W. N., Kok, J., Kuipers, O. P., Poolman, B.: Lactic acid bacteria: the bugs of the new millenium. Curr. Opin. Microbiol. 2000; 3, 276–282.
13. Goto, Y., Li, B., Claesen, J., Shi, Y., Bibb, M. J., van der Donk, W. A.: Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PloS Biol. 2010; http://www.plosbiology.org/ article/info%3Adoi%2F10.1371%2Fjournal.pbio.1000339 (21.01.2011).
14. Willey, J. M., van der Donk, W. A.: Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 2007; 61, 477–501.
15. Xie, L., Miller, L. M., Chatterjee, C., Averin, O., Kelleher, N. L., van der Donk, W. A.: Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 2004; 303, 679–681.
16. de Vos, W. M., Kuipers, O. P., van der Meer, J. R., Siezen, R. J.: Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol. Microbiol. 1995; 17, 427–437.
17. Quadri, L. E.: Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie Leeuwenhoek 2002; 82, 133–145.
18. Héchard, Y., Sahl, H. G.: Mode of action of modified and unmodified bacteriocins from gram-positive bacteria. Biochimie 2002; 84, 545–557.
19. Heng, N. C. K., Wescombe, P. A., Burton, J. P., Jack, R. W., Tagg, J. R.: The diversity of bacteriocins produced by gram-positive bacteria. In: Riley, M. A., Chavan, M. A., eds. Bacteriocins: Ecology and Evolution, 1st ed. Berlin, Springer-Verlag, 2007.
20. Rogers, L.: The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriology 1928; 16, 321–325.
21. Delves-Broughton, J.: Nisin and its uses as a food preservative. Food Technol. 1990; 40, 100–117.
22. Cleveland, J., Montville, T. J., Nes, I. F., Chikindas, M. L.: Bacteriocins: natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001; 71, 1–20.
23. Twomey, D., Ross, R. P., Ryan, M., Meany, B., Hill, C.: Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Leeuwenhoek 2002; 82, 165–185.
24. Gross, A., Morell, J. L.: Structure of nisin. J. Am. Chem. Soc. 1971; 93, 4634–4635.
25. Shiba, T., Wakamiya, T., Fukase, K., Ueki, Y., Teshima, T., Nishikawa, M.: Structure of the lanthionine peptides nisin, ancovenin and lanthiopeptin. In: G. Jung and H.-G. Sahl eds. Nisin and novel lantibiotics, 1st ed. Leiden, ESCOM Science Publishers, 1991.
26. Ross, R. P., Morgan, S., Hill, C.: Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 2002; 79, 3–16.
27. Carminati, D., Giraffa, G., Quiberoni, A., Binetti, A., Suárez, V., Reinheimer, J.: Advances and trends in starter cultures for dairy fermentations. In: Mozzi, F., Raya, R. R., Vignolo, G. M., eds. Biotechnology of lactic acid bacteria: Novel applications, 1st ed. Oxford, Wiley-Blackwell, 2010.
28. Bauer, R., Dicks, L. M. T.: Mode of action of lipid II–targeting lantibiotics. Int. J. Food Microbiol 2005; 101, 201–216.
29. Riley, M. A., Wertz, J. E.: Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 2002; 56, 117–137.
30. Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J., de Vos, W. M.: Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 1995, 20, 27299–27304.
31. De Vos, W. M.: Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 1999; 2, 289–295.
32. Cotter, P. D., Hill, C., Ross, R. P.: Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol. 2005; 3, 777–788.
33. Altena, K., Guder, A., Cramer, C., Bierbaum, G.: Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl. Environ. Microbiol. 2000; 66, 2565–2571.
34. Machaidze, G., Seelig, J.: Specific binding of cinnamycin (Ro 09-0198) to phosphatidylethanolamine. Comparison between micellar and membrane environments. Biochemistry 2003; 42, 12570–12576.
35. Galvin, M. H., Ross, R. P.: Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Lett. Appl. Microbiol. 1999, 28, 355–358.
36. Ryan, M. P., Jack, R., Josten, W., Sahl, H.-G., Jung, G., Ross, R. P., Hill, C.: Extensive post–translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J. Biol. Chem. 1999; 274, 37544–37550.
37. Dougherty, B., Hill, C., Wiedman, J., Richardson, D. R., Venter, J. C., Ross, R. P.: Sequence and analysis of the 60-kb conjugative, bacteriocin producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 1998; 29, 1029–1038.
38. Gilmore, M. S., Segarra, R. A., Booth, M. C., Bogie, C. P., Hall, L. R., Clewell, D. B.: Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 1994; 176, 7335–7344.
39. Larsen, A. G., Vogensen, F. K., Josephsen, J.: Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 1993; 75, 113–122.
40. Kaiser, A. L., Montville, T. J.: Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 1996; 62, 4529–4535.
41. Ennahar, S., Sashihara, S., Sonomoto, K., Ishizaki, A.: Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 2000; 24, 85–106.
42. Kazazic, M. M., Nissen-Meyer, J., Fimland, G.: Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology 2002; 148, 2019–2027.
43. Eom, J. E., Moon, S. K., Moon G.-S.: Heterologous production of pediocin PA-1 in Lactobacillus reuteri. J. Microbiol. Biotechnol. 2010; 20, 1215–1218.
44. Knorr, D.: Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 1998; 9, 295–306.
45. Papagianni, M., Anastasiadou, S.: The bacteriocins of pediococci. Sources, production, properties and applications. Microbial Cell Factories 2009; 8, 3–19.
46. Stephens, S. K., Floriano, B., Cathcart, D. P., Bayley, S. A., Witt, V. F., Jiménez-Díaz, R., Warner, P. J., Ruiz-Barba, J. L.: Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 1998; 64, 1871–1877.
47. Cintas, L. M., Casaus, P., Herranz, C., HĆvarstein, L. S., Holo, H., Hernández, P. E., Nes, I. F.: Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocins secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 2000; 182, 6806–6814.
48. Garneau, S., Martin, N. I., Vederas, J. C.: Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 2002; 84, 577–592.
49. Cintas, L. M., Casaus, P., Hararstein, L. S., Hernandez, P. E., Nes, I. F.: Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 1997; 63, 4321–4330.
50. Eijsink, V. G., Axelsson, L., Diep, D. B., Havarstein, L. S., Holo, H., Nes, I. F.: Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek 2002; 81, 639–54.
51. Jack, R. W., Tagg, J. R., Bibek, R.: Bacteriocins from gram-positive bacteria. Microbiol. Rev. 1995; 59, 171–200.
52. Lai, A. C., Tran, S., Simmonds, R. S.: Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiol. Lett. 2002; 215, 133–138.
53. Johnsen, L., Fimland, G., Nissen-Meyer, J.: The C‑terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J. Biol. Chem. 2005; 280, 9243–9250.
54. Zouhir, A., Hammami, R., Fliss, I., Hamida, J. B.: A new structure-based classification of gram-positive bacteriocins. Protein J. 2010; 29, 432–439.
55. Thomas, L. V., Clarkson, M. R., Delves-Broughton, J.: Nisin. In: Naidu, A. S. ed. Natural food antimicrobial systems, 1st ed. New York, CRC Press, 2000.
56. Schillinger, U., Geisen, R., Holzapfel, H. W.: Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Tech. 1996; 7, 158–164.
57. Stiles, M. E.: Biopreservation by lactic acid bacteria. Antonie Leeuwenhoek 1996; 70, 331–345.
58. Gálvez, A., Abriouel, H., López, R. L., Omar, N. B.: Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol 2007; 120, 51–70.
59. Kecerová, K., Pristaš, P., Javorský, P.: Bacteriocin production and sensitivity. Folia Microbiol. 2004; 49, 172–174.
60. Hammami, R., Zouhir, A., Le Lay, Ch., Hamida, J. B., Fliss, I.: BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 2010; 10, 22–27.
61. Kiňová Sepová, H., Bilková, A., Bilka, F., Bezáková, L.: Antimikróbne pôsobiace látky produkované baktériami mliečneho kvasenia. Čes. slov. Farm. 2010; 59, 155–159.
Štítky
Pharmacy Clinical pharmacologyČlánok vyšiel v časopise
Czech and Slovak Pharmacy
2011 Číslo 2
Najčítanejšie v tomto čísle
- Generic substitution, replacement and substitution of drugs: contemporary extent
- Myasthenia gravis – current treatment standards and emerging drugs
- Bacteriocins produced by lactic acid bacteria
- Pelletization of melts and liquids