#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Colour and content of some biologically active substances in natural products and products of natural origin


Authors: Jan Šubert 1;  Jozef Kolář 2;  Jozef Čižmárik 3
Authors place of work: Dušínova 1512/42, 664 34 Kuřim 1;  Katedra sociální a klinické farmacie, Farmaceutická fakulta, Univerzita Karlova 2;  Katedra farmaceutickej chémie, Farmaceutická fakulta, Univerzita Komenského v Bratislave, SR 3
Published in the journal: Čes. slov. Farm., 2021; 70, 83-90
Category: Review Articles
doi: https://doi.org/https://doi.org/10.5817/CSF2021-3-83

Summary

The paper draws attention to the correlations between the results of instrumental colour measurements and the content of some biologically active organic substances (carotenoids, chlorophyll, anthocyanins, curcuminoids, etc.) in natural products and products of natural origin. After supplementation by regression analysis and calibration, sufficiently close correlations can lead to the development of procedures for rapid determination of the content of these substances and their groups by colour measurement without more demanding sample treatment.

Keywords:

biologically active substances – colour measurement – correlation – content determination


Zdroje

1. Griffiths J. Colour and constitution of organic molecules. London: Academic Press 1976.

2. Wyszecki G., Stiles W. S. Color science: Concepts and methods, quantitative data and formulae. 2nd ed. New York: Wiley 1982.

3. Berger-Schunn A. Practical color measurement: A primer for the beginner, a reminder for the expert. New York: Wiley 1994.

4. Ohta N., Robertson A. R. Colorimetry: Fundamentals and applications. Chichester: Wiley 2005.

5. Capitán-Vallvey L. F., Lopez-Ruiz N., Martinez-Olmos A., Erenas M. M., Palma A. J. Recent developments in computer vision-based analytical chemistry: A tutorial review. Anal. Chim. Acta 2015; 899, 23–56. https://doi. org/10.1016/j.aca.2015.10.009 (2.2.2021).

6. Schults E. V., Monogarova O. V., Oskolok K. V. Digital colorimetry: Analytical possibilities and prospects of use. Moscow Univ. Chem. Bull. 2019; 74(2), 55–62. https://doi. org/10.3103/S002713141902007X (2.2.2021).

7. Fan Y., Li J., Guo Y., Xie L., Zhang G. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement 2021; 171, 108829. https://doi.org/ 10.1016/j.measurement.2020.108829 (2.2.2021).

8. Kružlicová D. Chemometria. Trnava: Univerzita sv. Cyrila a Metoda 2015.

9. Yap M., Fernando W. M., Brennan C. S., Jayasena V., Coorey R. The effects of banana ripeness on quality indices for puree production. LWT 2017; 80, 10–18. https://doi.org/10.1016/j.lwt.2017.01.073 (25.2.2021).

10. Choi M. H., Kim G. H., Lee H. S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002; 35, 753–759. https://doi. org/10.1016/S0963-9969(02)00071-6 (2.2.2021).

11. Xiong Y., Xiao X., Yan Y., Zou H., Li J. Study of the correlation between effective components content and color values of Lonicera japonica based on chromatometry. Chin. Arch. Tradit. Chin. Med. 2013; 31, 667–670.

12. Meléndez-Martínez A. J., Britton G., Vicario I. M., Heredia F. J. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem. 2007; 101, 1145–1150. https://doi.org/10.1016/j. foodchem.2006.03.015 (2.2.2021).

13. Isabel Minguez‐Mosquera M., Rejano‐Navarro L., Gandul‐Rojas B., Sánchez-Gómez A. H., Garrido‐Fernandez J. Color‐pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991; 68, 332–336. https://doi. org/10.1007/BF02657688 (9.2.2021).

14. Seroczyńska A., Korzeniewska A., Sztangret-Wiśniewska J., Niemirowicz-Szczytt K., Gajewski M. Relationship between carotenoids content and flower or fruit flesh colour of winter squash (Cucurbita maxima Duch.). Folia Hortic. 2006; 18, 51–61.

15. Itle R. A., Kabelka E. A. Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience 2009; 44, 633–637. https://doi.org/10.21273/HORTSCI.44.3.633 (9.2.2021).

16. Ruiz D., Reich M., Bureau S., Renard C. M., Audergon J. M. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). J. Agric. Food Chem. 2008; 56, 4916–4922. https://doi.org/10.1021/ jf7036032 (9.2.2021).

17. Lee H. S. Objective measurement of red grapefruit juice color. J. Agric. Food Chem. 2000; 48, 1507–1511. https://doi.org/10.1021/jf9907236 (9.2.2021).

18. Arias R., Lee T. C., Logendra L., Janes H. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000; 48, 1697–1702. https://doi. org/10.1021/jf990974e (9.2.2021).

19. Saad A. M., Ibrahim A., El-Bialee N. Internal quality assessment of tomato fruits using image color analysis. AgricEngInt: CIGR Journal 2016; 18, 339–352. http:// www.cigrjournal.org (11.2.2021).

20. Hyman J. R., Gaus J., Foolad M. R. A rapid and accurate method for estimating tomato lycopene content by measuring chromaticity values of fruit puree. J. Amer. Soc. Hort. Sci. 2004; 129, 717–723. https://doi. org/10.21273/JASHS.129.5.0717 (10.2.2021).

21. Nikolova K., Gentscheva G., Ivanova E. Survey of the mineral content and some physico-chemical parameters of Bulgarian bee honeys. Bulg. Chem. Commun. 2013; 45, 244–249.

22. Conesa A., Manera F. C., Brotons J. M., Fernandez- Zapata J. C., Simón I., Simón-Grao S., Alfosea- Simónd M., Martínez Nicolás J. J., Valverdee J. M., García-Sanchez F. Changes in the content of chlorophylls and carotenoids in the rind of Fino 49 lemons during maturation and their relationship with parame ters from the CIELAB color space. Sci. Hortic. 2019; 243, 252–260. https://doi.org/10.1016/j.scienta.2018.08.030 (11.2.2021).

23. Raposo F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC – Trends Anal. Chem. 2016; 77, 167–185. https://doi.org/10.1016/j. trac.2015.12.006 (14.2.2021).

24. Jurado J. M., Alcázar A., Muñiz-Valencia R., Ceballos- Magaña S. G., Raposo F. Some practical considerations for linearity assessment of calibration curves as function of concentration levels according to the fitness-for-purpose approach. Talanta 2017; 172, 221–229. https://doi.org/10.1016/j.talanta.2017.05.049 (14.2.2021).

25. Meléndez-Martínez A. J., Gómez-Robledo L., Melgosa M., Vicario I. M., Heredia F. J. Color of orange juices in relation to their carotenoid contents as assessed from different spectroscopic data. J. Food Compos. Anal. 2011; 24, 837–844. https://doi.org/10.1016/j. jfca.2011.05.001 (14.2.2021).

26. Helyes L., Pék Z., Lugasi A. Tomato fruit quality and content depend on stage of maturity. HortScience 2006; 41, 1400–1401. https://doi.org/10.21273/HORTSCI. 41.6.1400 (14.2.20121).

27. Pandurangaiah S., Sadashiva A. T., Shivashankar K. S., Sudhakar Rao D. V., Ravishankar K. V. Carotenoid content in cherry tomatoes correlated to the color space values L*, a*, b*: A non-destructive method of estimation. J. Hort. Sci. 2020; 15, 27–34. https://doi. org/10.24154/JHS.2020.v15i01.004 (15.2.2021).

28. Meléndez-Martínez A. J., Vicario I. M., Heredia F. J. Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices. J. Agric. Food Chem. 2003; 51, 7266–7270. https://doi. org/10.1021/jf034873z (14.2.20121).

29. Berset C., Caniaux P. Relationship between color evaluation and chlorophyllian pigment content in dried parsley leaves. J. Food Sci. 1983; 48, 1854–1857. https://doi.org/10.1111/j.1365-2621.1983.tb05100.x (17.2.2021).

30. Sledz M., Witrowa-Rajchert D. Influence of microwave- convective drying of chlorophyll content and colour of herbs. Acta Agrophysica 2012; 19, 865–876.

31. Ali M. B., Khandaker L., Oba S. Comparative study on functional components, antioxidant activity and color parameters of selected colored leafy vegetables as affected by photoperiods. J. Food Agric. Environ. 2009; 7, 392–398.

32. Hu H., Liu H. Q., Zhang H., Zhu J. H., Yao X. G., Zhang X. B., Zheng K. F. Assessment of chlorophyll content based on image color analysis, comparison with SPAD- 502. In: 2nd International conference on information engineering and computer science. Wuhan: 2010, 1–3. doi: 10.1109/ICIECS.2010.5678413 (20.2.2020).

33. Riccardi M., Mele G., Pulvento C., Lavini A., d’Andria R., Jacobsen S. E. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image com- ponents. Photosynth. Res. 2014; 120, 263–272. https:// doi.org/10.1007/s11120-014-9970-2 (21.2.2021).

34. Rigon J. P. G., Capuani S., Fernandes D. M., Guimarães T. M. A novel method for the estimation of soybean chlorophyll content using a smartphone and image analysis. Photosynthetica 2016; 54, 559–566. https:// doi.org/10.1007/s11099-016-0214-x (21.2.2021).

35. Ibrahim N. U. A., Abd Aziz S., Jamaludin D., Harith H. H. Development of smartphone-based imaging techniques for the estimation of chlorophyll content in lettuce leaves. Food Res. 2021; 5(Suppl 1), 33–38. https:// doi.org/10.26656/fr.2017.5(S1).036 (21.2.2021).

36. Kasım R., Suuml M., Kasım M. U. Relationship between total anthocyanin level and colour of natural cherry laurel (Prunus laurocerasus L.) fruits. Afr. J. Plant Sci. 2011; 5, 323–328. http://www.academicjournals. org/ajps (26.2.2021).

37. Yoshioka Y., Nakayama M., Noguchi Y., Horie H. Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit. Breeding Sci. 2013; 63, 211–217. https://doi. org/10.1270/jsbbs.63.211 (27.2.2021).

38. Supannarach S. The study of using picture to measure the curcuminiods amount in turmeric (Curcuma longa Linn.) by comparing with ratio of RGB colors. In: Proceedings of the 51st Kasetsart University Annual Conference. Bangkok: Kasetsart University 2013 (27.2.2021).

39. Pal K., Chowdhury S., Dutta S. K., Chakraborty S., Chakraborty M., Pandit G. K., Dutta S., Paul P. K., Choudhury A., Majumder B., Sahana N., Mandal S. Analysis of rhizome colour content, bioactive compound profiling and ex-situ conservation of turmeric genotypes (Curcuma longa L.) from sub-Himalayan terai region of India. Ind. Crops Prod. 2020; 150, 112401. https://doi.org/10.1016/j.indcrop.2020.112401 (27.2.2021).

40. Wongthanyakram J., Harfield A., Masawat P. A smart device-based digital image colorimetry for immediate and simultaneous determination of curcumin in turmeric. Comput. Electron. Agric. 2019; 166, 104981. https:// doi.org/10.1016/j.compag.2019.104981 (27.2.2021).

41. Doui M., Mikage M. The relationship between the color value and pungent compound contents of ginger subjected to heating, soaking in hot water, or steaming. J. Trad. Med. 2012; 29, 115–123. https://doi.org/10.11339/ jtm.29.115 (28.2.2021).

42. Prieto-Santiago V., Cavia M. M., Alonso-Torre S. R., Carrillo C. Relationship between color and betalain content in different thermally treated beetroot products. J. Food Sci. Technol. 2020; 57, 3305–3313. https:// doi.org/10.1007/s13197-020-04363-z (28.2.2021).

43. Antigo J. L. D., Bergamasco R. D. C., Madrona G. S. Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Sci. Technol. 2018; 38, 72–77. https://doi.org/10.1590/1678-457x.34316 (28.2.2021).

44. Heinrich M., Daniels R., Stintzing F. C., Kammerer D. R. Comprehensive phytochemical characterization of St. John’s wort (Hypericum perforatum L.) oil macerates obtained by different extraction protocols via analytical tools applicable in routine control. Pharmazie 2017; 72, 131–138. https://doi.org/10.1691/ph.2017.6749 (28.2.2021).

45. Al-Dabbas M. M., Otoom H. A., Al-Antary T. M. Impact of honey color from Jordanian flora on total phenolic and flavonoids content and antioxidant activity. Fresenius Environ. Bull. 2019; 28, 6898–6907.

46. Falcão S. I., Freire C., Vilas-Boas M. A proposal for physicochemical standards and antioxidant activity of Portuguese propolis. J. Am. Oil Chem. Soc. 2013; 90, 1729–1741. https://doi.org/10.1007/s11746-013- 2324-y (1.3.2021).

47. Anuar N., Taha R. M., Mahmad N., Mohajer S., Musa S. A. N. I. C., Abidin Z. H. Z. Correlation of colour, antioxidant capacity and phytochemical diversity of imported saffron by principal components analysis. Pigment Resin Technol. 2017; 46, 107–114. https://doi. org/10.1108/PRT-09-2015-0091 (1.3.2021).

48. Guo S., Li Q., He W. W., Kang T. G. Correlation between effective components and powder color of Celosiae cristatae flos. Chin. J. Exp. Tradit. Med. Form. 2016; 24, 014. Abstract: https://en.cnki.com.cn/Article_en/CJFDTotal -ZSFX201624014.htm (25.2.2021).

49. Chai C. C., Mao M., Yuan J. F., Peng S. T., Wang J. Y., Liu N., Wei J., Li X. X., Zhang K., Li F. Correlation between color of Scutellariae radix pieces and content of five flavonoids after softening and cutting by different methods. China J. Chin. Mater. Med. 2019; 44, 4467–4475. Abstract: doi: 10.19540/j.cnki.cjcmm.20190630.306. (2.3.2021).

50. Zhang Y., Hu X. S. Chen F., Wu J. H., Liao X. J., Wang Z. F. Stability and colour characteristics of PEF-treated cyanidin-3-glucoside during storage. Food Chem. 2008; 106, 669–676. https://doi.org/10.1016/j.foodchem. 2007.06.030 (8.3.2021).

51. García-Marino M., Hernández-Hierro J. M., Rivas -Gonzalo J. C., Escribano-Bailón M. T. Colour and pigment composition of red wines obtained from co-maceration of Tempranillo and Graciano varieties. Anal. Chim. Acta 2010; 660, 134–142. https://doi. org/10.1016/j.aca.2009.10.055(31.3.2021).

52. Lu C., Li Y., Wang J., Qu J., Chen Y., Chen X., Huang H., Dai S. Flower color classification and correlation between color space values with pigments in potted multiflora chrysanthemum. Sci. Hortic. 2021; 283, 110082. https://doi.org/10.1016/j.scienta.2021.110082 (12.3.2021).

53. Xu M., Du C., Zhang N., Shi X., Wu Z., Qiao Y. Color spaces of safflower (Carthamus tinctorius L.) for quality assessment. J. Tradit. Chin. Med. Sci. 2016; 3, 168–175. https://doi.org/10.1016/j.jtcms.2016.11.004 (2.3.2021).

54. Argyropoulos D., Müller J. Kinetics of change in colour and rosmarinic acid equivalents during convective drying of lemon balm (Melissa officinalis L.). J. Appl. Res. Med. Aromat. Plants 2014; 1(1), e15–e22. https://doi. org/10.1016/j.jarmap.2013.12.001 (7.3.2021).

55. Li R. Q., Wu C., Xu L., Ma Y. C., Chen Y., Chao Z. M. Correlation between color and contents of chemical constituents in Aconiti lateralis radix praeparata. Chin. J. Pharm. Anal. 2019; 39, 1315–1322. doi: 10.16155/ j.0254-1793.2019.07.20 (2.3.2021).

56. He X. F., Wang L. L., Zhang J. Application of color analysis method in the field of medical research based on chromaticity. Chin. J. Pharm. Anal. 2018; 38, 1471–1475. http://dx.doi.org/10.16155/j.0254-1793.2018.09.01 (4.3.2021).

57. Eckschlager K., Horsák I., Kodejš Z. Vyhodnocování analytických výsledků a metod. Praha: SNTL – Nakladatelství technické literatury 1980.

58. Kumpanenko I. V., Roshchin A. V., Ivanova N. A., Bloshenko A. V., Shalynina N. A., Korneeva T. N. Colorimetry: Choice of colorimetric parameters for chro mophore concentration measurements. Russ. J. Gen. Chem. 2014; 84, 2295–2304. https://doi.org/10.1134/ S1070363214110498 (2.2.2021).

59. Ye X., Izawa T., Zhang S. Rapid determination of lycopene content and fruit grading in tomatoes using a smart device camera. Cogent Eng. 2018; 5, 1504499. https://doi.org/10.1080/23311916.2018.1504499 (21.3.2021).

60. Agarwal A., Dongre P. K., Gupta S. D. Smartphone-assisted real-time estimation of chlorophyll and carotenoid contents in spinach following the inversion of red and green color features. bioRxiv. 2021; https:// www.biorxiv.org/content/10.1101/2021.03.06.43423 7v1.full.pdf (21.3.2021).

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#